Show simple item record

Sn-O Dual-Substituted Chlorine-Rich Argyrodite Electrolyte with Enhanced Moisture and Electrochemical Stability

dc.contributor.authorLi, Guoyao
dc.contributor.authorWu, Shaoping
dc.contributor.authorZheng, Hongpeng
dc.contributor.authorYang, Yu
dc.contributor.authorCai, Jingyu
dc.contributor.authorZhu, Hong
dc.contributor.authorHuang, Xiao
dc.contributor.authorLiu, Hezhou
dc.contributor.authorDuan, Huanan
dc.date.accessioned2023-04-04T17:43:56Z
dc.date.available2024-04-04 13:43:53en
dc.date.available2023-04-04T17:43:56Z
dc.date.issued2023-03
dc.identifier.citationLi, Guoyao; Wu, Shaoping; Zheng, Hongpeng; Yang, Yu; Cai, Jingyu; Zhu, Hong; Huang, Xiao; Liu, Hezhou; Duan, Huanan (2023). "Sn-O Dual-Substituted Chlorine-Rich Argyrodite Electrolyte with Enhanced Moisture and Electrochemical Stability." Advanced Functional Materials 33(11): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/176105
dc.description.abstractChlorine-rich argyrodite sulfides are one of the most promising solid electrolytes for all-solid-state batteries owing to their remarkable ionic conductivity and decent mechanical properties. However, their application has been limited by imperfections such as moisture instability and poor electrochemical stability. Herein, a Sn and O is proposed dual-substitution strategy in Li5.4PS4.4Cl1.6 (LPSC) to improve the moisture tolerance and boost the electrochemical performance. The optimized composition of Li5.5(P0.9Sn0.1)(S4.2O0.2)Cl1.6 (LPSC-10) sintered at 500 °C exhibits a room-temperature ionic conductivity of 8.7 mS cm−1, an electrochemical window up to 5 V, a critical current density of 1.2 mA cm−2, and stable lithium plating/striping. When exposed to humid air, LPSC-10 exhibits a small increment in total resistance, generates a mild amount of H2S gas, and displays favorable structure stability after heat treatment. The first-principles calculation confirms that the dual-substituted composition less tends to be hydrolyzed than the un-substituted one. The all-solid-state battery with LiIn|NMC811 electrodes presents a high initial discharge capacity of 103.6 mAh g−1 at 0.5 C rates and maintains 101.4 mAh g−1 at the 100th cycle, with a 97.9% capacity retention rate. The present study opens a new alternative for simultaneously promoting moisture and electrochemical stability.By introducing Sn and O dual substitution in chlorine-rich argyrodite Li5.4PS4.4Cl1.6, and comparing the different substitution levels, Li5.5(P0.9Sn0.1)(S4.2O0.2)Cl1.6 is demonstrated to possess the enhanced moisture stability, exhibit the dendrite-free lithium stripping/plating at 0.5 mA cm−2, and enable high capacity retention of 97.9% at 0.5 C rate (101.4 mAh g−1 at 100th cycle) using NMC cathode.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer Berlin Heidelberg
dc.subject.otherdual substitution
dc.subject.othermoisture stability
dc.subject.otherall-solid–state batteries
dc.subject.otherlithium compatibility
dc.subject.otherlithium argyrodite
dc.titleSn-O Dual-Substituted Chlorine-Rich Argyrodite Electrolyte with Enhanced Moisture and Electrochemical Stability
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176105/1/adfm202211805.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176105/2/adfm202211805_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176105/3/adfm202211805-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/adfm.202211805
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceR. Hu, Y. Ouyang, T. Liang, H. Wang, J. Liu, J. Chen, C. Yang, L. Yang, M. Zhu, Adv. Mater. 2017, 29, 1605006.
dc.identifier.citedreferenceL. Sang, R. T. Haasch, A. A. Gewirth, R. G. Nuzzo, Chem. Mater. 2017, 29, 3029.
dc.identifier.citedreferenceF. Zhao, J. Liang, C. Yu, Q. Sun, X. Li, K. Adair, C. Wang, Y. Zhao, S. Zhang, W. Li, S. Deng, R. Li, Y. Huang, H. Huang, L. Zhang, S. Zhao, S. Lu, X. Sun, Adv. Energy Mater. 2020, 10, 1903422.
dc.identifier.citedreferenceZ. Jiang, H. Peng, Y. Liu, Z. Li, Y. Zhong, X. Wang, X. Xia, C. Gu, J. Tu, Adv. Energy Mater. 2021, 11, 2101521.
dc.identifier.citedreferenceL. Ye, X. Li, Nature 2021, 593, 218.
dc.identifier.citedreferenceY.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.-S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J. H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, I. T. Han, Nat. Energy 2020, 5, 299.
dc.identifier.citedreferenceY. Liu, H. Su, M. Li, J. Xiang, X. Wu, Y. Zhong, X. Wang, X. Xia, C. Gu, J. Tu, J. Mater. Chem. A 2021, 9, 13531.
dc.identifier.citedreferenceF. Zhao, Q. Sun, C. Yu, S. Zhang, K. Adair, S. Wang, Y. Liu, Y. Zhao, J. Liang, C. Wang, X. Li, X. Li, W. Xia, R. Li, H. Huang, L. Zhang, S. Zhao, S. Lu, X. Sun, ACS Energy Lett. 2020, 5, 1035.
dc.identifier.citedreferenceF. Han, J. Yue, X. Zhu, C. Wang, Adv. Energy Mater. 2018, 8, 1703644.
dc.identifier.citedreferenceX. Fan, X. Ji, F. Han, J. Yue, J. Chen, L. Chen, T. Deng, J. Jiang, C. Wang, Sci. Adv. 2018, 4, 9245.
dc.identifier.citedreferencea) L. Ye, E. Gil-González, X. Li, Electrochem. Commun. 2021, 128, 107058; b) L. Peng, S. Chen, C. Yu, C. Wei, C. Liao, Z. Wu, H. L. Wang, S. Cheng, J. Xie, ACS Appl. Mater. Interfaces 2022, 14, 4179.
dc.identifier.citedreferencea) L. Peng, C. Yu, Z. Zhang, H. Ren, J. Zhang, Z. He, M. Yu, L. Zhang, S. Cheng, J. Xie, Chem. Eng. J. 2022, 430, 132896; b) P. Adeli, J. D. Bazak, K. H. Park, I. Kochetkov, A. Huq, G. R. Goward, L. F. Nazar, Angew. Chem., Int. Ed. 2019, 58, 8681.
dc.identifier.citedreferenceT. Kaib, S. Haddadpour, M. Kapitein, P. Bron, C. Schröder, H. Eckert, B. Roling, S. Dehnen, Chem. Mater. 2012, 24, 2211.
dc.identifier.citedreferenceT. Chen, D. Zeng, L. Zhang, M. Yang, D. Song, X. Yan, C. Yu, J Energy Chem 2021, 59, 530.
dc.identifier.citedreferenceK. Kanazawa, S. Yubuchi, C. Hotehama, M. Otoyama, S. Shimono, H. Ishibashi, Y. Kubota, A. Sakuda, A. Hayashi, M. Tatsumisago, Inorg. Chem. 2018, 57, 9925.
dc.identifier.citedreferenceL. Popović, B. Manoun, D. de Waal, M. K. Nieuwoudt, J. D. Comins, J. Raman Spectrosc. 2003, 34, 77.
dc.identifier.citedreferenceB. W. Taklu, W.-N. Su, Y. Nikodimos, K. Lakshmanan, N. T. Temesgen, P.-X. Lin, S.-K. Jiang, C.-J. Huang, D.-Y. Wang, H.-S. Sheu, S.-H. Wu, B. J. Hwang, Nano Energy 2021, 90, 106542.
dc.identifier.citedreferenceT. Chen, L. Zhang, Z. Zhang, P. Li, H. Wang, C. Yu, X. Yan, L. Wang, B. Xu, ACS Appl. Mater. Interfaces 2019, 11, 40808.
dc.identifier.citedreferenceA. Sakuda, A. Hayashi, M. Tatsumisago, Curr. Opin. Electrochem. 2017, 6, 108.
dc.identifier.citedreferenceJ. T. S. Irvine, D. C. Sinclair, A. R. West, Adv. Mater. 1990, 2, 132.
dc.identifier.citedreferencea) N. Minafra, S. P. Culver, T. Krauskopf, A. Senyshyn, W. G. Zeier, J. Mater. Chem. A 2018, 6, 645; b) M. A. Kraft, S. P. Culver, M. Calderon, F. Böcher, T. Krauskopf, A. Senyshyn, C. Dietrich, A. Zevalkink, J. Janek, W. G. Zeier, J. Am. Chem. Soc. 2017, 139, 10909.
dc.identifier.citedreferenceM. A. Kraft, S. Ohno, T. Zinkevich, R. Koerver, S. P. Culver, T. Fuchs, A. Senyshyn, S. Indris, B. J. Morgan, W. G. Zeier, J. Am. Chem. Soc. 2018, 140, 16330.
dc.identifier.citedreferenceN. J. J. de Klerk, I. Rosłoń, M. Wagemaker, Chem. Mater. 2016, 28, 7955.
dc.identifier.citedreferenceC. Yu, S. Ganapathy, E. R. H. van Eck, L. van Eijck, S. Basak, Y. Liu, L. Zhang, H. W. Zandbergen, M. Wagemaker, J. Mater. Chem. A 2017, 5, 21178.
dc.identifier.citedreferenceM. Otoyama, K. Kuratani, H. Kobayashi, Ceram. Int. 2021, 47, 28377.
dc.identifier.citedreferencea) Y. Li, J. Li, J. Cheng, X. Xu, L. Chen, L. Ci, Adv. Mater. Interfaces 2021, 8, 2100368; b) R. Z. Hu, Y. Zhang, M. Zhu, Electrochim. Acta 2008, 53, 3377; c) C. Chang, L. Liu, S. Wang, L. Li, X. Liu, Metall. Mater. Trans. A 2018, 49, 5930.
dc.identifier.citedreferenceH. Zheng, S. Wu, R. Tian, Z. Xu, H. Zhu, H. Duan, H. Liu, Adv. Funct. Mater. 2020, 30, 1906189.
dc.identifier.citedreferenceY. Liu, H. Su, Y. Zhong, X. Wang, X. Xia, C. Gu, J. Tu, Adv. Funct. Mater. 2022, 32, 2207978.
dc.identifier.citedreferenceP. Lu, L. Liu, S. Wang, J. Xu, J. Peng, W. Yan, Q. Wang, H. Li, L. Chen, F. Wu, Adv. Mater. 2021, 33, 2100921.
dc.identifier.citedreferenceK. D. M. Harris, in Advanced X-Ray Crystallography, (Ed: K. Rissanen ), Springer Berlin Heidelberg, Berlin, Heidelberg 2012, 133.
dc.identifier.citedreferencea) A. Hayashi, H. Muramatsu, T. Ohtomo, S. Hama, M. Tatsumisago, J. Mater. Chem. A 2013, 1, 6320; b) H. Muramatsu, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago, Solid State Ionics 2011, 182, 116.
dc.identifier.citedreferenceJ. Auvergniot, A. Cassel, J.-B. Ledeuil, V. Viallet, V. Seznec, R. Dedryvère, Chem. Mater. 2017, 29, 3883.
dc.identifier.citedreferencea) J. C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, Y. Shao-Horn, Chem. Rev. 2016, 116, 140; b) Z. Zhang, Y. Shao, B. Lotsch, Y.-S. Hu, H. Li, J. Janek, L. F. Nazar, C.-W. Nan, J. Maier, M. Armand, L. Chen, Energy Environ. Sci. 2018, 11, 1945; c) K. J. Kim, M. Balaish, M. Wadaguchi, L. Kong, J. L. M. Rupp, Adv. Energy Mater. 2021, 11, 2002689.
dc.identifier.citedreferencea) Y. Seino, T. Ota, K. Takada, A. Hayashi, M. Tatsumisago, Energy Environ. Sci. 2014, 7, 627; b) N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, Nat. Mater. 2011, 10, 682; c) Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, Nat. Energy 2016, 1, 16030; d) Z. Zhang, L. Wu, D. Zhou, W. Weng, X. Yao, Nano Lett. 2021, 21, 5233.
dc.identifier.citedreferencea) C. Wang, R. Yu, H. Duan, Q. Lu, Q. Li, K. R. Adair, D. Bao, Y. Liu, R. Yang, J. Wang, S. Zhao, H. Huang, X. Sun, ACS Energy Lett. 2021, 7, 410; b) Y. Li, Y. Wu, Z. Wang, J. Xu, T. Ma, L. Chen, H. Li, F. Wu, Mater. Today 2022, 55, 92.
dc.identifier.citedreferencea) S. Wenzel, S. J. Sedlmaier, C. Dietrich, W. G. Zeier, J. Janek, Solid State Ionics 2018, 318, 102; b) S. Wenzel, S. Randau, T. Leichtweiß, D. A. Weber, J. Sann, W. G. Zeier, J. Janek, Chem. Mater. 2016, 28, 2400.
dc.identifier.citedreferenceC. Yu, F. Zhao, J. Luo, L. Zhang, X. Sun, Nano Energy 2021, 83, 105858.
dc.identifier.citedreferenceH. J. Deiseroth, S. T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiss, M. Schlosser, Angew Chem Int Ed Engl 2008, 47, 755.
dc.identifier.citedreferenceD. Zeng, J. Yao, L. Zhang, R. Xu, S. Wang, X. Yan, C. Yu, L. Wang, Nat. Commun. 2022, 13, 1909.
dc.identifier.citedreferenceP. Lu, D. Wu, L. Chen, H. Li, F. Wu, Electrochem. Energy Rev. 2022, 5, 3.
dc.identifier.citedreferenceX. Bai, Y. Duan, W. Zhuang, R. Yang, J. Wang, J. Mater. Chem. A 2020, 8, 25663.
dc.identifier.citedreferenceY. Zhu, X. He, Y. Mo, ACS Appl. Mater. Interfaces 2015, 7, 23685.
dc.identifier.citedreferenceC. Yu, L. van Eijck, S. Ganapathy, M. Wagemaker, Electrochim. Acta 2016, 215, 93.
dc.identifier.citedreferenceY. Liang, H. Liu, G. Wang, C. Wang, Y. Ni, C.-W. Nan, L.-Z. Fan, InfoMat 2022, 4, 12292.
dc.identifier.citedreferenceZ. Ning, D. S. Jolly, G. Li, R. De Meyere, S. D. Pu, Y. Chen, J. Kasemchainan, J. Ihli, C. Gong, B. Liu, D. L. R. Melvin, A. Bonnin, O. Magdysyuk, P. Adamson, G. O. Hartley, C. W. Monroe, T. J. Marrow, P. G. Bruce, Nat. Mater. 2021, 20, 1121.
dc.identifier.citedreferencea) J. Zhang, C. Zheng, L. Li, Y. Xia, H. Huang, Y. Gan, C. Liang, X. He, X. Tao, W. Zhang, Adv. Energy Mater. 2019, 10, 1903311; b) F. Walther, R. Koerver, T. Fuchs, S. Ohno, J. Sann, M. Rohnke, W. G. Zeier, J. Janek, Chem. Mater. 2019, 31, 3745.
dc.identifier.citedreferenceD. Lee, K.-H. Park, S. Y. Kim, J. Y. Jung, W. Lee, K. Kim, G. Jeong, J.-S. Yu, J. Choi, M.-S. Park, W. Cho, J. Mater. Chem. A 2021, 9, 17311.
dc.identifier.citedreferenceH. Xu, G. Cao, Y. Shen, Y. Yu, J. Hu, Z. Wang, G. Shao, Energy Environ. Mater. 2022, 5, 852.
dc.identifier.citedreferenceZ. Zhang, L. Zhang, X. Yan, H. Wang, Y. Liu, C. Yu, X. Cao, L. van Eijck, B. Wen, J. Power Sources 2019, 410, 162.
dc.identifier.citedreferenceG. Sahu, Z. Lin, J. Li, Z. Liu, N. Dudney, C. Liang, Energy Environ. Sci. 2014, 7, 1053.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.