Show simple item record

Damage to living trees contributes to almost half of the biomass losses in tropical forests

dc.contributor.authorZuleta, Daniel
dc.contributor.authorArellano, Gabriel
dc.contributor.authorMcMahon, Sean M.
dc.contributor.authorAguilar, Salomón
dc.contributor.authorBunyavejchewin, Sarayudh
dc.contributor.authorCastaño, Nicolas
dc.contributor.authorChang-Yang, Chia-Hao
dc.contributor.authorDuque, Alvaro
dc.contributor.authorMitre, David
dc.contributor.authorNasardin, Musalmah
dc.contributor.authorPérez, Rolando
dc.contributor.authorSun, I-Fang
dc.contributor.authorYao, Tze Leong
dc.contributor.authorValencia, Renato
dc.contributor.authorKrishna moorthy, Sruthi M.
dc.contributor.authorVerbeeck, Hans
dc.contributor.authorDavies, Stuart J.
dc.date.accessioned2023-06-01T20:49:23Z
dc.date.available2024-07-01 16:49:21en
dc.date.available2023-06-01T20:49:23Z
dc.date.issued2023-06
dc.identifier.citationZuleta, Daniel; Arellano, Gabriel; McMahon, Sean M.; Aguilar, Salomón ; Bunyavejchewin, Sarayudh; Castaño, Nicolas ; Chang-Yang, Chia-Hao ; Duque, Alvaro; Mitre, David; Nasardin, Musalmah; Pérez, Rolando ; Sun, I-Fang ; Yao, Tze Leong; Valencia, Renato; Krishna moorthy, Sruthi M. ; Verbeeck, Hans; Davies, Stuart J. (2023). "Damage to living trees contributes to almost half of the biomass losses in tropical forests." Global Change Biology (12): 3409-3420.
dc.identifier.issn1354-1013
dc.identifier.issn1365-2486
dc.identifier.urihttps://hdl.handle.net/2027.42/176842
dc.description.abstractAccurate estimates of forest biomass stocks and fluxes are needed to quantify global carbon budgets and assess the response of forests to climate change. However, most forest inventories consider tree mortality as the only aboveground biomass (AGB) loss without accounting for losses via damage to living trees: branchfall, trunk breakage, and wood decay. Here, we use ~151,000 annual records of tree survival and structural completeness to compare AGB loss via damage to living trees to total AGB loss (mortality + damage) in seven tropical forests widely distributed across environmental conditions. We find that 42% (3.62 Mg ha−1 year−1; 95% confidence interval [CI] 2.36–5.25) of total AGB loss (8.72 Mg ha−1 year−1; CI 5.57–12.86) is due to damage to living trees. Total AGB loss was highly variable among forests, but these differences were mainly caused by site variability in damage-related AGB losses rather than by mortality-related AGB losses. We show that conventional forest inventories overestimate stand-level AGB stocks by 4% (1%–17% range across forests) because assume structurally complete trees, underestimate total AGB loss by 29% (6%–57% range across forests) due to overlooked damage-related AGB losses, and overestimate AGB loss via mortality by 22% (7%–80% range across forests) because of the assumption that trees are undamaged before dying. Our results indicate that forest carbon fluxes are higher than previously thought. Damage on living trees is an underappreciated component of the forest carbon cycle that is likely to become even more important as the frequency and severity of forest disturbances increase.Tree mortality is typically considered the only source of biomass loss in forest systems. A pervasive but commonly neglected biomass loss is the damage to living trees (i.e., branchfall, trunk breakage, wood decay). We show that 42% of total aboveground biomass loss is due to damage to living trees across seven tropical forests. Our results contrast with the typically low forest biomass losses estimated only from tree mortality and suggest that forest carbon turnover may be higher than previously thought. Since forest disturbance rates are expected to increase under climate change, biomass loss to damage is likely to become more important
dc.publisherJohn Wiley & Sons, Ltd
dc.subject.othertropical forests
dc.subject.otherforest disturbance
dc.subject.othercanopy turnover
dc.subject.othercarbon fluxes
dc.subject.otherforest biomass
dc.subject.otherForestGEO
dc.subject.otherglobal carbon budget
dc.subject.otherterrestrial laser scanning
dc.subject.othertree damage
dc.subject.othertree mortality
dc.titleDamage to living trees contributes to almost half of the biomass losses in tropical forests
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176842/1/gcb16687_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176842/2/gcb16687.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176842/3/gcb16687-sup-0001-DataS1.pdf
dc.identifier.doi10.1111/gcb.16687
dc.identifier.sourceGlobal Change Biology
dc.identifier.citedreferenceMcEwan, R. W., Lin, Y.-C., Sun, I.-F., Hsieh, C.-F., Su, S.-H., Chang, L.-W., Song, G. Z. M., Wang, H. H., Hwong, J. L., Lin, K. C., Yang, K. C., & Chiang, J. M. ( 2011 ). Topographic and biotic regulation of aboveground carbon storage in subtropical broad-leaved forests of Taiwan. Forest Ecology and Management, 262, 1817 – 1825.
dc.identifier.citedreferenceGora, E. M., Kneale, R. C., Larjavaara, M., & Muller-Landau, H. C. ( 2019 ). Dead wood necromass in a moist tropical forest: Stocks, fluxes, and spatiotemporal variability. Ecosystems, 22, 1189 – 1205.
dc.identifier.citedreferenceHall, J., Muscarella, R., Quebbeman, A., Arellano, G., Thompson, J., Zimmerman, J. K., & Uriarte, M. ( 2020 ). Hurricane-induced rainfall is a stronger predictor of tropical forest damage in Puerto Rico than maximum wind speeds. Scientific Reports, 10, 4318.
dc.identifier.citedreferenceHarris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., de Bruin, S., Farina, M., Fatoyinbo, L., Hansen, M. C., Herold, M., Houghton, R. A., Potapov, P. V., Suarez, D. R., Roman-Cuesta, R. M., Saatchi, S. S., Slay, C. M., Turubanova, S. A., & Tyukavina, A. ( 2021 ). Global maps of twenty-first century forest carbon fluxes. Nature Climate Change, 11, 234 – 240.
dc.identifier.citedreferenceHeineman, K. D., Russo, S. E., Baillie, I. C., Mamit, J. D., Chai, P. P.-K., Chai, L., Hindley, E. W., Lau, B. T., Tan, S., & Ashton, P. S. ( 2015 ). Evaluation of stem rot in 339 Bornean tree species: Implications of size, taxonomy, and soil-related variation for aboveground biomass estimates. Biogeosciences, 12, 5735 – 5751.
dc.identifier.citedreferenceHogan, J., Zimmerman, J., Thompson, J., Uriarte, M., Swenson, N., Condit, R., Hubbell, S., Johnson, D., Sun, I., Chang-Yang, C. H., Su, S. H., Ong, P., Rodriguez, L., Monoy, C., Yap, S., & Davies, S. ( 2018 ). The frequency of cyclonic wind storms shapes tropical forest dynamism and functional trait dispersion. Forests, 9, 404.
dc.identifier.citedreferenceHubau, W., Lewis, S. L., Phillips, O. L., Affum-Baffoe, K., Beeckman, H., Cuní-Sanchez, A., Daniels, A. K., Ewango, C. E. N., Fauset, S., Mukinzi, J. M., Sheil, D., Sonké, B., Sullivan, M. J. P., Sunderland, T. C. H., Taedoumg, H., Thomas, S. C., White, L. J. T., Abernethy, K. A., Adu-Bredu, S., … Zemagho, L. ( 2020 ). Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 579, 80 – 87.
dc.identifier.citedreferenceKohyama, T. S., Kohyama, T. I., & Sheil, D. ( 2019 ). Estimating net biomass production and loss from repeated measurements of trees in forests and woodlands: Formulae, biases and recommendations. Forest Ecology and Management, 433, 729 – 740.
dc.identifier.citedreferenceKolby Smith, W., Reed, S. C., Cleveland, C. C., Ballantyne, A. P., Anderegg, W. R. L., Wieder, W. R., Liu, Y. Y., & Running, S. W. ( 2016 ). Large divergence of satellite and Earth system model estimates of global terrestrial CO 2 fertilization. Nature Climate Change, 6, 306 – 310.
dc.identifier.citedreferenceKrishna Moorthy, S. M., Calders, K., Vicari, M. B., & Verbeeck, H. ( 2020 ). Improved supervised learning-based approach for leaf and wood classification from LiDAR point clouds of forests. IEEE Transactions on Geoscience and Remote Sensing, 58, 3057 – 3070.
dc.identifier.citedreferenceKrishna Moorthy, S. M., Meunier, F., Calders, K., Aguilar, A., Pausenberger, N., Schnitzer, S. A., Visser, M. D., Muller-Landau, H. C., & Verbeeck, H. ( 2022 ). Datasets to quantify the impact of lianas on 3D tree structure and biomass. Zenodo. https://doi.org/10.5281/zenodo.6981485
dc.identifier.citedreferenceLabrière, N., Davies, S. J., Disney, M. I., Duncanson, L. I., Herold, M., Lewis, S. L., Phillips, O. L., Quegan, S., Saatchi, S. S., Schepaschenko, D. G., Scipal, K., Sist, P., & Chave, J. ( 2022 ). Toward a forest biomass reference measurement system for remote sensing applications. Global Change Biology, 29, 827 – 840.
dc.identifier.citedreferenceLeitold, V., Morton, D. C., Martinuzzi, S., Paynter, I., Uriarte, M., Keller, M., Ferraz, A., Cook, B. D., Corp, L. A., & González, G. ( 2022 ). Tracking the rates and mechanisms of canopy damage and recovery following hurricane Maria using multitemporal Lidar data. Ecosystems, 25, 892 – 910.
dc.identifier.citedreferenceMaass, J. M., Martínez-Yrízar, A., Patiño, C., & Sarukhán, J. ( 2002 ). Distribution and annual net accumulation of above-ground dead phytomass and its influence on throughfall quality in a Mexican tropical deciduous forest ecosystem. Journal of Tropical Ecology, 18, 821 – 834.
dc.identifier.citedreferenceMalhi, Y., Farfán Amézquita, F., Doughty, C. E., Silva-Espejo, J. E., Girardin, C. A. J., Metcalfe, D. B., Aragão, L. E. O. C., Huaraca-Quispe, L. P., Alzamora-Taype, I., Eguiluz-Mora, L., Marthews, T. R., Halladay, K., Quesada, C. A., Robertson, A. L., Fisher, J. B., Zaragoza-Castells, J., Rojas-Villagra, C. M., Pelaez-Tapia, Y., Salinas, N., … Phillips, O. L. ( 2014 ). The productivity, metabolism and carbon cycle of two lowland tropical forest plots in south-western Amazonia, Peru. Plant Ecology & Diversity, 7, 85 – 105.
dc.identifier.citedreferenceMarvin, D. C., & Asner, G. P. ( 2016 ). Branchfall dominates annual carbon flux across lowland Amazonian forests. Environmental Research Letters, 11, 094027.
dc.identifier.citedreferenceMcDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D. G., & Yepez, E. A. ( 2008 ). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719 – 739.
dc.identifier.citedreferenceMcDowell, N. G., Sapes, G., Pivovaroff, A., Adams, H. D., Allen, C. D., Anderegg, W. R. L., Arend, M., Breshears, D. D., Brodribb, T., Choat, B., Cochard, H., de Cáceres, M., de Kauwe, M. G., Grossiord, C., Hammond, W. M., Hartmann, H., Hoch, G., Kahmen, A., Klein, T., … Xu, C. ( 2022 ). Mechanisms of woody-plant mortality under rising drought, CO 2 and vapour pressure deficit. Nature Reviews Earth & Environment, 3, 294 – 308.
dc.identifier.citedreferenceMuller-Landau, H. C., Cushman, K. C., Arroyo, E. E., Martinez Cano, I., Anderson-Teixeira, K. J., & Backiel, B. ( 2021 ). Patterns and mechanisms of spatial variation in tropical forest productivity, woody residence time, and biomass. New Phytologist, 229, 3065 – 3087.
dc.identifier.citedreferenceNeedham, J. F., Arellano, G., Davies, S. J., Fisher, R. A., Hammer, V., Knox, R. G., Mitre, D., Muller-Landau, H. C., Zuleta, D., & Koven, C. D. ( 2022 ). Tree crown damage and its effects on forest carbon cycling in a tropical forest. Global Change Biology, 28, 5560 – 5574.
dc.identifier.citedreferenceNewbery, D. M., & Zahnd, C. ( 2021 ). Change in liana density over 30 years in a Bornean rain forest supports the escape hypothesis. Ecosphere, 12, e03537.
dc.identifier.citedreferencePaciorek, C. J., Condit, R., Hubbell, S. P., & Foster, R. B. ( 2000 ). The demographics of resprouting in tree and shrub species of a moist tropical forest. Journal of Ecology, 88, 765 – 777.
dc.identifier.citedreferencePalace, M., Keller, M., & Silva, H. ( 2008 ). Necromass production: Studies in undisturbed and logged Amazon forests. Ecological Applications, 18, 873 – 884.
dc.identifier.citedreferencePiponiot, C., Anderson-Teixeira, K. J., Davies, S. J., Allen, D., Bourg, N. A., Burslem, D. F. R. P., Cárdenas, D., Chang-Yang, C. H., Chuyong, G., Cordell, S., Dattaraja, H. S., Duque, Á., Ediriweera, S., Ewango, C., Ezedin, Z., Filip, J., Giardina, C. P., Howe, R., Hsieh, C. F., … Muller-Landau, H. C. ( 2022 ). Distribution of biomass dynamics in relation to tree size in forests across the world. New Phytologist, 234, 1664 – 1677.
dc.identifier.citedreferenceRaumonen, P., Kaasalainen, M., Åkerblom, M., Kaasalainen, S., Kaartinen, H., Vastaranta, M., Holopainen, M., Disney, M., & Lewis, P. ( 2013 ). Fast automatic precision tree models from terrestrial laser scanner data. Remote Sensing, 5, 491 – 520.
dc.identifier.citedreferenceReis, S. M., Marimon, B. S., Esquivel-Muelbert, A., Marimon, B. H., Jr., Morandi, P. S., Elias, F., de Oliveira, E. A., Galbraith, D., Feldpausch, T. R., Menor, I. O., Malhi, Y., & Phillips, O. L. ( 2022 ). Climate and crown damage drive tree mortality in southern Amazonian edge forests. Journal of Ecology, 110, 876 – 888.
dc.identifier.citedreferenceRéjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J., & Hérault, B. ( 2017 ). biomass: An r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution, 8, 1163 – 1167.
dc.identifier.citedreferenceRequena Suarez, D., Rozendaal, D. M. A., De Sy, V., Phillips, O. L., Alvarez-Dávila, E., Anderson-Teixeira, K., Arroyo, L., Baker, T. R., Bongers, F., Brienen, R. J. W., Carter, S., Cook-Patton, S. C., Feldpausch, T. R., Griscom, B. W., Harris, N., Hérault, B., Honorio Coronado, E. N., Leavitt, S. M., Lewis, S. L., … Herold, M. ( 2019 ). Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data. Global Change Biology, 25, 3609 – 3624.
dc.identifier.citedreferenceRood, S. B., Patiño, S., Coombs, K., & Tyree, M. T. ( 2000 ). Branch sacrifice: Cavitation-associated drought adaptation of riparian cottonwoods. Trees, 14, 248 – 257.
dc.identifier.citedreferenceSeidl, R. ( 2017 ). Forest disturbances under climate change. Nature Climate Change, 7, 395 – 402.
dc.identifier.citedreferenceShigo, A. L. ( 1984 ). Compartmentalization: A conceptual framework for understanding how trees grow and defend themselves. Annual Review of Phytopathology, 22, 189 – 214.
dc.identifier.citedreferenceSolé, R. V., & Manrubia, S. C. ( 1995 ). Are rainforests self-organized in a critical state? Journal of Theoretical Biology, 173, 31 – 40.
dc.identifier.citedreferenceSprugel, D. G., Hinckley, T. M., & Schaap, W. ( 1991 ). The theory and practice of branch autonomy. Annual Review of Ecology and Systematics, 22, 309 – 334.
dc.identifier.citedreferenceSu, S., Guan, B. T., Chang-Yang, C., Sun, I., Wang, H., & Hsieh, C. ( 2020 ). Multi-stemming and size enhance survival of dominant tree species in a frequently typhoon-disturbed forest. Journal of Vegetation Science, 31, 429 – 439.
dc.identifier.citedreferenceTanner, E. V. J., Rodriguez-Sanchez, F., Healey, J. R., Holdaway, R. J., & Bellingham, P. J. ( 2014 ). Long-term hurricane damage effects on tropical forest tree growth and mortality. Ecology, 95, 2974 – 2983.
dc.identifier.citedreferenceVer Planck, N. R., & MacFarlane, D. W. ( 2014 ). Modelling vertical allocation of tree stem and branch volume for hardwoods. Forestry, 87, 459 – 469.
dc.identifier.citedreferenceXu, L., Saatchi, S. S., Yang, Y., Yu, Y., Pongratz, J., Bloom, A. A., Bowman, K., Worden, J., Liu, J., Yin, Y., Domke, G., McRoberts, R. E., Woodall, C., Nabuurs, G. J., de-Miguel, S., Keller, M., Harris, N., Maxwell, S., & Schimel, D. ( 2021 ). Changes in global terrestrial live biomass over the 21st century. Science Advances, 7, eabe9829.
dc.identifier.citedreferenceYang, H., Ciais, P., Wang, Y., Huang, Y., Wigneron, J., Bastos, A., Chave, J., Chang, J., Doughty, C. E., Fan, L., Goll, D., Joetzjer, E., Li, W., Lucas, R., Quegan, S., Le Toan, T., & Yu, K. ( 2021 ). Variations of carbon allocation and turnover time across tropical forests. Global Ecology and Biogeography, 30, 1271 – 1285.
dc.identifier.citedreferenceYap, S. L., Davies, S. J., & Condit, R. ( 2016 ). Dynamic response of a Philippine dipterocarp forest to typhoon disturbance. Journal of Vegetation Science, 27, 133 – 143.
dc.identifier.citedreferenceZanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, H., Jansen, S., Lewis, S., Miller, R., Swenson, N., Wiemann, M., & Chave, J. ( 2009 ). Global wood density database. Dryad [Data set].
dc.identifier.citedreferenceZuleta, D., Arellano, G., Aguilar, S., Bunyavejchewin, S., Castaño, N., Chang-Yang, C.-H., Duque, A., Mitre, D., Nasardin, M., Pérez, R., Sun, I.-F., Yao, T. L., Valencia, R., McMahon, S. M., & Davies, S. J. ( 2023 ). Tree damage and mortality measurements across seven ForestGEO plots in the tropics between Oct 2016 and Mar 2023.
dc.identifier.citedreferenceZuleta, D., Arellano, G., Muller-Landau, H. C., McMahon, S. M., Aguilar, S., Bunyavejchewin, S., Cárdenas, D., Chang-Yang, C. H., Duque, A., Mitre, D., Nasardin, M., Pérez, R., Sun, I. F., Yao, T. L., & Davies, S. J. ( 2022 ). Individual tree damage dominates mortality risk factors across six tropical forests. New Phytologist, 233, 705 – 721.
dc.identifier.citedreferenceZuleta, D., Krishna Moorthy, S. M., Arellano, G., Verbeeck, H., & Davies, S. J. ( 2022 ). Vertical distribution of trunk and crown volume in tropical trees. Forest Ecology and Management, 508, 120056.
dc.identifier.citedreferenceAnderegg, W. R. L., Berry, J. A., Smith, D. D., Sperry, J. S., Anderegg, L. D. L., & Field, C. B. ( 2012 ). The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceedings of the National Academy of Sciences of the United States of America, 109, 233 – 237.
dc.identifier.citedreferenceAnderson-Teixeira, K. J., Herrmann, V., Banbury Morgan, R., Bond-Lamberty, B., Cook-Patton, S. C., Ferson, A. E., Muller-Landau, H. C., & Wang, M. M. H. ( 2021 ). Carbon cycling in mature and regrowth forests globally. Environmental Research Letters, 16, 053009.
dc.identifier.citedreferenceAraujo, R. F., Grubinger, S., Celes, C. H. S., Negrón-Juárez, R. I., Garcia, M., Dandois, J. P., & Muller-Landau, H. C. ( 2021 ). Strong temporal variation in treefall and branchfall rates in a tropical forest is related to extreme rainfall: Results from 5 years of monthly drone data for a 50 ha plot. Biogeosciences, 18, 6517 – 6531.
dc.identifier.citedreferenceArellano, G., Medina, N. G., Tan, S., Mohamad, M., & Davies, S. J. ( 2019 ). Crown damage and the mortality of tropical trees. New Phytologist, 221, 169 – 179.
dc.identifier.citedreferenceArellano, G., Zuleta, D., & Davies, S. J. ( 2021 ). Tree death and damage: A standardized protocol for frequent surveys in tropical forests. Journal of Vegetation Science, 32, e12981.
dc.identifier.citedreferenceBarrere, J., Reineking, B., Cordonnier, T., Kulha, N., Honkaniemi, J., Peltoniemi, M., Korhonen, K. T., Ruiz-Benito, P., Zavala, M. A., & Kunstler, G. ( 2023 ). Functional traits and climate drive interspecific differences in disturbance-induced tree mortality. Global Change Biology, 1 – 16. https://doi.org/10.1111/gcb.16630
dc.identifier.citedreferenceBates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H., Dai, B., Scheipl, F., Grothendieck, G., Green, P., Fox, J., & Bauer, A. ( 2022 ). lme4: Linear Mixed-Effects Models using “Eigen” and S4.
dc.identifier.citedreferenceBauman, D., Fortunel, C., Delhaye, G., Malhi, Y., Cernusak, L. A., Bentley, L. P., Rifai, S. W., Aguirre-Gutiérrez, J., Menor, I. O., Phillips, O. L., McNellis, B. E., Bradford, M., Laurance, S. G. W., Hutchinson, M. F., Dempsey, R., Santos-Andrade, P. E., Ninantay-Rivera, H. R., Chambi Paucar, J. R., & McMahon, S. M. ( 2022 ). Tropical tree mortality has increased with rising atmospheric water stress. Nature, 608, 528 – 533.
dc.identifier.citedreferenceCabon, A., Kannenberg, S. A., Arain, A., Babst, F., Baldocchi, D., Belmecheri, S., Delpierre, N., Guerrieri, R., Maxwell, J. T., McKenzie, S., Meinzer, F. C., Moore, D. J. P., Pappas, C., Rocha, A. V., Szejner, P., Ueyama, M., Ulrich, D., Vincke, C., Voelker, S. L., … Anderegg, W. R. L. ( 2022 ). Cross-biome synthesis of source versus sink limits to tree growth. Science, 376, 758 – 761.
dc.identifier.citedreferenceCarvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca, M., Μu, M., Saatchi, S., Santoro, M., Thurner, M., Weber, U., Ahrens, B., Beer, C., Cescatti, A., Randerson, J. T., & Reichstein, M. ( 2014 ). Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature, 514, 213 – 217.
dc.identifier.citedreferenceChambers, J. Q., dos Santos, J., Ribeiro, R. J., & Higuchi, N. ( 2001 ). Tree damage, allometric relationships, and above-ground net primary production in Central Amazon forest. Forest Ecology and Management, 152, 73 – 84.
dc.identifier.citedreferenceChao, K.-J., Liao, P.-S., Chen, Y.-S., Song, G.-Z. M., Phillips, O. L., & Lin, H.-J. ( 2022 ). Very low stocks and inputs of necromass in wind-affected tropical forests. Ecosystems, 25, 488 – 503.
dc.identifier.citedreferenceChave, J., Condit, R., Lao, S., Caspersen, J. P., Foster, R. B., & Hubbell, S. P. ( 2003 ). Spatial and temporal variation of biomass in a tropical forest: Results from a large census plot in Panama. Journal of Ecology, 91, 240 – 252.
dc.identifier.citedreferenceChave, J., Davies, S. J., Phillips, O. L., Lewis, S. L., Sist, P., Schepaschenko, D., Armston, J., Baker, T. R., Coomes, D., Disney, M., Duncanson, L., Hérault, B., Labrière, N., Meyer, V., Réjou-Méchain, M., Scipal, K., & Saatchi, S. ( 2019 ). Ground data are essential for biomass remote sensing missions. Surveys in Geophysics, 40, 863 – 880.
dc.identifier.citedreferenceChave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., … Vieilledent, G. ( 2014 ). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20, 3177 – 3190.
dc.identifier.citedreferenceClark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., & Ni, J. ( 2001 ). Measuring net primary production in forests: Concepts and field methods. Ecological Applications, 11, 356 – 370.
dc.identifier.citedreferenceClark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., Ni, J., & Holland, E. A. ( 2001 ). Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecological Applications, 11, 14 – 384.
dc.identifier.citedreferenceClark, D. B., & Kellner, J. R. ( 2012 ). Tropical forest biomass estimation and the fallacy of misplaced concreteness. Journal of Vegetation Science, 23, 1191 – 1196.
dc.identifier.citedreferenceCloudCompare. ( 2021 ). CloudCompare (version 2.10.2). [GPL software].
dc.identifier.citedreferenceCsilléry, K., Kunstler, G., Courbaud, B., Allard, D., Lassègues, P., Haslinger, K., & Gardiner, B. ( 2017 ). Coupled effects of wind-storms and drought on tree mortality across 115 forest stands from the Western Alps and the Jura mountains. Global Change Biology, 23, 5092 – 5107.
dc.identifier.citedreferenceCushman, K. C., Bunyavejchewin, S., Cárdenas, D., Condit, R., Davies, S. J., Duque, Á., Hubbell, S. P., Kiratiprayoon, S., Lum, S. K. Y., & Muller-Landau, H. C. ( 2021 ). Variation in trunk taper of buttressed trees within and among five lowland tropical forests. Biotropica, 53, 1442 – 1453.
dc.identifier.citedreferenceCushman, K. C., Detto, M., García, M., & Muller-Landau, H. C. ( 2022 ). Soils and topography control natural disturbance rates and thereby forest structure in a lowland tropical landscape. Ecology Letters, 25, 1126 – 1138.
dc.identifier.citedreferenceDalagnol, R., Wagner, F. H., Galvão, L. S., Streher, A. S., Phillips, O. L., Gloor, E., Pugh, T. A. M., Ometto, J. P. H. B., & Aragão, L. E. O. C. ( 2021 ). Large-scale variations in the dynamics of Amazon forest canopy gaps from airborne lidar data and opportunities for tree mortality estimates. Scientific Reports, 11, 1388.
dc.identifier.citedreferenceDavies, S. J., Abiem, I., Abu Salim, K., Aguilar, S., Allen, D., Alonso, A., Anderson-Teixeira, K., Andrade, A., Arellano, G., Ashton, P. S., Baker, P. J., Baker, M. E., Baltzer, J. L., Basset, Y., Bissiengou, P., Bohlman, S., Bourg, N. A., Brockelman, W. Y., Bunyavejchewin, S., … Zuleta, D. ( 2021 ). ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 253, 108907.
dc.identifier.citedreferenceDuncanson, L., Armston, J., Disney, M., Avitabile, V., Barbier, N., Calders, K., Carter, S., Chave, J., Herold, M., Crowther, T. W., Falkowski, M., Kellner, J. R., Labrière, N., Lucas, R., MacBean, N., McRoberts, R. E., Meyer, V., Næsset, E., Nickeson, J. E., … Williams, M. ( 2019 ). The importance of consistent global forest aboveground biomass product validation. Surveys in Geophysics, 40, 979 – 999.
dc.identifier.citedreferenceDuque, A., Peña, M. A., Cuesta, F., González-Caro, S., Kennedy, P., Phillips, O. L., Calderón-Loor, M., Blundo, C., Carilla, J., Cayola, L., Farfán-Ríos, W., Fuentes, A., Grau, R., Homeier, J., Loza-Rivera, M. I., Malhi, Y., Malizia, A., Malizia, L., Martínez-Villa, J. A., … Feeley, K. J. ( 2021 ). Mature Andean forests as globally important carbon sinks and future carbon refuges. Nature Communications, 12, 2138.
dc.identifier.citedreferenceDyer, L. A., Carson, W. P., & Leigh, E. G. ( 2012 ). Insect outbreaks in tropical forests: Patterns, mechanisms, and consequences. In P. Barbosa, D. K. Letourneau, & A. A. Agrawal (Eds.), Insect outbreaks revisited (pp. 219 – 245 ). John Wiley & Sons, Ltd.
dc.identifier.citedreferenceEspírito-Santo, F. D. B., Gloor, M., Keller, M., Malhi, Y., Saatchi, S., Nelson, B., Junior, R. C. O., Pereira, C., Lloyd, J., Frolking, S., Palace, M., Shimabukuro, Y. E., Duarte, V., Mendoza, A. M., López-González, G., Baker, T. R., Feldpausch, T. R., Brienen, R. J. W., Asner, G. P., … Phillips, O. L. ( 2014 ). Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nature Communications, 5, 3434.
dc.identifier.citedreferenceFeeley, K. J., & Zuleta, D. ( 2022 ). Changing forests under climate change. Nature Plants, 8, 984 – 985.
dc.identifier.citedreferenceFriedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., le Quéré, C., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Bates, N. R., Becker, M., Bellouin, N., … Zeng, J. ( 2022 ). Global carbon budget 2021. Earth System Science Data, 14, 1917 – 2005.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.