Ion beam modification of metals: Compositional and microstructural changes
dc.contributor.author | Was, Gary S. | en_US |
dc.date.accessioned | 2006-04-07T20:57:22Z | |
dc.date.available | 2006-04-07T20:57:22Z | |
dc.date.issued | 1989 | en_US |
dc.identifier.citation | Was, Gary S. (1989)."Ion beam modification of metals: Compositional and microstructural changes." Progress in Surface Science 32(3-4): 211-332. <http://hdl.handle.net/2027.42/28153> | en_US |
dc.identifier.uri | http://www.sciencedirect.com/science/article/B6TJF-46FVG2K-G/2/15d786fb053b71e816b446978380bc3b | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/28153 | |
dc.description.abstract | Ion implantation has become a highly developed tool for modifying the structure and properties of metals and alloys. In addition to direct implantation, a variety of other ion beam techniques such as ion beam mixing, ion beam assisted deposition and plasma source ion implantation have been used increasingly in recent years. The modifications constitute compositional and microstructural changes in the surface of the metal. This leads to alterations in physical properties (transport, optical, corrosion, oxidation), as well as mechanical properties (strength, hardness, wear resistance, fatigue resistance). The compositional changes brought about by ion bombardment are classified into recoil implantation, cascade mixing, radiation-enhanced diffusion, radiation-induced segregation, Gibbsian adsorption and sputtering which combine to produce an often complicated compositional variation within the implanted layer and often, well beyond. Microstructurally, the phases present are often altered from what is expected from equilibrium thermodynamics giving rise to order-disorder transformations, metastable (crystalline, amorphous or quasicrystalline) phase formation and growth, as well as densification, grain growth, formation of a preferred texture and the formation of a high density dislocation network. All these effects need to be understood before one can determine the effect of ion bombardment on the physical and mechanical properties of metals. This paper reviews the literature in terms of the compositional and microstructural changes induced by ion bombardment, whether by direct implantation, ion beam mixing or other forms of ion irradiation. The topics are introduced as well as reviewed, making this a more pedogogical approach as opposed to one which treats only recent developments. The aim is to provide the tools needed to understand the consequent changes in physical and mechanical properties. | en_US |
dc.format.extent | 5966838 bytes | |
dc.format.extent | 3118 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.language.iso | en_US | |
dc.publisher | Elsevier | en_US |
dc.title | Ion beam modification of metals: Compositional and microstructural changes | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Materials Science and Engineering | en_US |
dc.subject.hlbsecondlevel | Chemistry | en_US |
dc.subject.hlbsecondlevel | Chemical Engineering | en_US |
dc.subject.hlbsecondlevel | Biological Chemistry | en_US |
dc.subject.hlbtoplevel | Engineering | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Departments of Nuclear Engineering and Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/28153/1/0000605.pdf | en_US |
dc.identifier.doi | http://dx.doi.org/10.1016/0079-6816(89)90005-1 | en_US |
dc.identifier.source | Progress in Surface Science | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.