Show simple item record

The effect of fiber orientation on the toughening of short fiber-reinforced polymers

dc.contributor.authorNorman, David A.en_US
dc.contributor.authorRobertson, Richard E.en_US
dc.date.accessioned2006-04-19T13:32:41Z
dc.date.available2006-04-19T13:32:41Z
dc.date.issued2003-12-05en_US
dc.identifier.citationNorman, David A.; Robertson, Richard E. (2003)."The effect of fiber orientation on the toughening of short fiber-reinforced polymers." Journal of Applied Polymer Science 90(10): 2740-2751. <http://hdl.handle.net/2027.42/34402>en_US
dc.identifier.issn0021-8995en_US
dc.identifier.issn1097-4628en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/34402
dc.description.abstractThe effect of fiber orientation on the toughening of polymers by short glass fibers generally below their critical length was investigated using specimens with either well-aligned or randomly oriented fibers. The fibers were aligned by an electric field in a photopolymerizable monomer, which was polymerized while the field was still being applied. These materials were fractured with the aligned fibers in three orientations with respect to the crack plane and propagation direction. Specimens with fibers aligned normal to the fracture plane were the most tough, those with randomly oriented fibers were less tough, and those with fibers aligned within the fracture plane were the least tough. The fracture behaviors compared favorably with predictions based on observed processes accounting for fiber orientation. The processes considered were fiber pull-out (including snubbing), fiber breakage, fiber–matrix debonding, and localized matrix-yielding adjacent to fibers bridging the fracture plane. Fibers not quite perpendicular to the fracture plane provided the greatest toughening; these fibers pulled out completely and gave a significant contribution from snubbing. Fibers at higher angles provided less toughening, involving nearly equal contributions from pull-out, breakage, and debonding. Fibers within the fracture plane provided the least toughening, involving debonding alone. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2740–2751, 2003en_US
dc.format.extent263295 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherChemistryen_US
dc.subject.otherPolymer and Materials Scienceen_US
dc.titleThe effect of fiber orientation on the toughening of short fiber-reinforced polymersen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelManagementen_US
dc.subject.hlbsecondlevelEconomicsen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelBusinessen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 ; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/34402/1/12913_ftp.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1002/app.12913en_US
dc.identifier.sourceJournal of Applied Polymer Scienceen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.