Show simple item record

Voronoi binding site models

dc.contributor.authorCrippen, Gordon M.en_US
dc.date.accessioned2006-04-28T16:49:43Z
dc.date.available2006-04-28T16:49:43Z
dc.date.issued1987-10en_US
dc.identifier.citationCrippen, Gordon M. (1987)."Voronoi binding site models." Journal of Computational Chemistry 8(7): 943-955. <http://hdl.handle.net/2027.42/38276>en_US
dc.identifier.issn0192-8651en_US
dc.identifier.issn1096-987Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/38276
dc.description.abstractA frequently occurring problem in drug design and enzymology is that the binding constants for several compounds to the same site are known, but the geometry and energetic interactions of the site are not. This paper presents in detail a novel approach to the problem which accurately but compactly represents the allowed conformation space of each ligand, accurately depicts their three-dimensional structures, and realistically allows each ligand to adopt the conformation and positioning in the site which is most favorable energetically. The investigator supplies only the ligand structures and observed binding free energies, along with a proposed site geometry. With no further assumptions about how the ligands bind and what parts of the ligands are important in determining the binding, the algorithm fits the observed binding energies without leaving outliers, predicts exactly how each of the given ligands binds in the site, and predicts the strength and mode of binding of new compounds, regardless of chemical similarity to the original set of ligands. The method is illustrated by devising a simple site that accounts for the binding of five polychlorinated biphenyls to thyroxine binding prealbumin. This model then predicts the binding energies correctly for an additional six biphenyls, and fails on one compound.en_US
dc.format.extent1252178 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherJohn Wiley & Sons, Inc.en_US
dc.subject.otherComputational Chemistry and Molecular Modelingen_US
dc.subject.otherBiochemistryen_US
dc.titleVoronoi binding site modelsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCollege of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/38276/1/540080703_ftp.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1002/jcc.540080703en_US
dc.identifier.sourceJournal of Computational Chemistryen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.