Show simple item record

Silica dissolution as a route to octaanionic silsesquioxanes

dc.contributor.authorKang, K. H.en_US
dc.contributor.authorLaine, Richard M.en_US
dc.date.accessioned2007-07-11T18:15:33Z
dc.date.available2007-07-11T18:15:33Z
dc.date.issued2006-06en_US
dc.identifier.citationKang, K. H.; Laine, R. M. (2006). "Silica dissolution as a route to octaanionic silsesquioxanes." Applied Organometallic Chemistry 20(6): 393-398. <http://hdl.handle.net/2027.42/55232>en_US
dc.identifier.issn0268-2605en_US
dc.identifier.issn1099-0739en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/55232
dc.description.abstractThe octaanion, [OSiO 1.5 ] 8 8− (OA) is a low cost, discrete nano silica particle that can be made directly from high surface area, amorphous silica reacted with Me 4 NOH in water alcohol mixtures. It would be ideal if Me 4 NOH could be formed in situ from, for example, Me 4 NCl and NaOH, as long known in the literature. This process would reduce costs and enable recycling of Me 4 NCl produced in the functionalization of OA with chlorosilanes, RMe 2 SiCl, to form [RMe 2 SiOSiO 1.5 ] 8 organic/inorganic hybrid nanobuilding blocks. Kinetic studies were conducted to assess base-promoted dissolution of fumed silica (25 m 2 /g) as a function of concentrations, times, etc., to form the octaanion [OSiO 1.5 ] 8 8− using Me 4 NOH, NaOH and mixtures of NaOH/Me 4 NCl. Surprisingly, we find that small amounts of Me 4 NCl greatly inhibit the dissolution reaction for reasons that are as yet unknown. Copyright © 2005 John Wiley & Sons, Ltd.en_US
dc.format.extent141234 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherJohn Wiley & Sons, Ltd.en_US
dc.subject.otherChemistryen_US
dc.subject.otherIndustrial Chemistry and Chemical Engineeringen_US
dc.titleSilica dissolution as a route to octaanionic silsesquioxanesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, and the Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI 48109-2136, USA ; On leave from Korean Chemicals Companyen_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, and the Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI 48109-2136, USA ; This paper is dedicated to Professor Ulrich Schubert on the occasion of his 60th birthday ; University of Michigan, Ann Arbour, MI 48109-2136.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/55232/1/1071_ftp.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1002/aoc.1071en_US
dc.identifier.sourceApplied Organometallic Chemistryen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.