Show simple item record

A Comparison of Methods for Estimating the Causal Effect of a Treatment in Randomized Clinical Trials Subject to Noncompliance

dc.contributor.authorLittle, Roderick J. A.en_US
dc.contributor.authorLong, Qien_US
dc.contributor.authorLin, Xihongen_US
dc.date.accessioned2010-04-01T14:45:13Z
dc.date.available2010-04-01T14:45:13Z
dc.date.issued2009-06en_US
dc.identifier.citationLittle, Roderick J.; Long, Qi; Lin, Xihong (2009). "A Comparison of Methods for Estimating the Causal Effect of a Treatment in Randomized Clinical Trials Subject to Noncompliance." Biometrics 65(2): 640-649. <http://hdl.handle.net/2027.42/65200>en_US
dc.identifier.issn0006-341Xen_US
dc.identifier.issn1541-0420en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65200
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18510650&dopt=citationen_US
dc.description.abstractWe consider the analysis of clinical trials that involve randomization to an active treatment ( T  = 1) or a control treatment ( T  = 0), when the active treatment is subject to all-or-nothing compliance. We compare three approaches to estimating treatment efficacy in this situation: as-treated analysis, per-protocol analysis, and instrumental variable (IV) estimation, where the treatment effect is estimated using the randomization indicator as an IV. Both model- and method-of-moment based IV estimators are considered. The assumptions underlying these estimators are assessed, standard errors and mean squared errors of the estimates are compared, and design implications of the three methods are examined. Extensions of the methods to include observed covariates are then discussed, emphasizing the role of compliance propensity methods and the contrasting role of covariates in these extensions. Methods are illustrated on data from the Women Take Pride study, an assessment of behavioral treatments for women with heart disease.en_US
dc.format.extent187933 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights©2009 International Biometric Societyen_US
dc.subject.otherAs-treated Analysisen_US
dc.subject.otherCausal Inferenceen_US
dc.subject.otherEfficacyen_US
dc.subject.otherInstrumental Variablesen_US
dc.subject.otherPer-protocol Analysisen_US
dc.subject.otherPrincipal Stratificationen_US
dc.subject.otherPropensity Scoresen_US
dc.titleA Comparison of Methods for Estimating the Causal Effect of a Treatment in Randomized Clinical Trials Subject to Noncomplianceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.en_US
dc.contributor.affiliationotherDepartment of Biostatistics, Emory University, Atlanta, Georgia 30322, U.S.A.en_US
dc.contributor.affiliationotherDepartment of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, U.S.A.en_US
dc.identifier.pmid18510650en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65200/1/j.1541-0420.2008.01066.x.pdf
dc.identifier.doi10.1111/j.1541-0420.2008.01066.xen_US
dc.identifier.sourceBiometricsen_US
dc.identifier.citedreferenceAbadie, A. ( 2002 ). Bootstrap tests for distributional treatment effects in instrumental variable models. Journal of the American Statistical Association 97, 284 – 292.en_US
dc.identifier.citedreferenceAngrist, J. D., Imbens, G. W., and Rubin, D. B. ( 1996 ). Identification of causal effects using instrumental variables (with discussion and rejoinder). Journal of the American Statistical Association 91, 444 – 472.en_US
dc.identifier.citedreferenceBaker, S. G. ( 1997 ). Compliance, all-or-none. In The Encyclopedia of Statistical Science, S. Kotz, C. R. Read, and D. L. Banks (eds), Update Volume 1, 134 – 138. New York : John Wiley and Sons.en_US
dc.identifier.citedreferenceBaker S. G. ( 2000 ). Analyzing a randomized cancer prevention trial with a missing binary outcome, an auxiliary variable, and all-or-none compliance. Journal of the American Statistical Association 95, 43 – 50.en_US
dc.identifier.citedreferenceBaker, S. G. and Kramer, B. S. ( 2005 ). Simple maximum likelihood estimates of efficacy in randomized trials and before-and-after studies, with implications for meta analysis. Statistical Methods in Medical Research 14, 605 and Correction (Vol. 14, p. 349, 2005).en_US
dc.identifier.citedreferenceBaker, S. G. and Lindeman, K. S. ( 1994 ). The paired availability design: A proposal for evaluating epidural analgesia during labor. Statistics in Medicine 13, 2269 – 2278.en_US
dc.identifier.citedreferenceBang, H. and Davis, C. E. ( 2007 ). On estimating treatment effects under non-compliance in randomized clinical trials: Are intent-to-treat or instrumental variables analyses perfect solutions? Statistics in Medicine 26, 954 – 964.en_US
dc.identifier.citedreferenceBond, S. J., White, I. R., and Walker, A. S. ( 2007 ). Instrumental variables and interactions in the causal analysis of a complex clinical trial. Statistics in Medicine 26, 1473 – 1496.en_US
dc.identifier.citedreferenceBrookhart, M. A. and Schneeweiss, S. ( 2007 ). Preference-based instrumental variable methods for the estimation of treatment effects: Assessing validity and interpreting results. International Journal of Biostatistics 3, 14.en_US
dc.identifier.citedreferenceFrangakis, C. E. and Rubin, D. B. ( 1999 ). Addressing complications of intent-to-treat analysis in the combined presence of all-or-none treatment-noncompliance and subsequent missing outcomes. Biometrika 86, 365 – 379.en_US
dc.identifier.citedreferenceFrangakis, C. E. and Rubin, D. B. ( 2002 ). Principal stratification in causal inference. Biometrics 58, 21 – 29.en_US
dc.identifier.citedreferenceGoetghebeur, E. and Molenberghs, G. ( 1996 ). Causal inference in a placebo-controlled clinical trial with binary outcome and ordered compliance. Journal of the American Statistical Association 91, 928 – 934.en_US
dc.identifier.citedreferenceGreenland S. ( 2000 ). An introduction to instrumental variables for epidemiologists. International Journal of Epidemiology 29, 722 – 729.en_US
dc.identifier.citedreferenceImbens, G. W. and Rubin, D. B. ( 1997a ). Estimating outcome distributions for compliers in instrumental variables models. Review of Economic Studies 64, 555 – 574.en_US
dc.identifier.citedreferenceImbens, G. W. and Rubin, D. B. ( 1997b ). Bayesian inference for causal effects in randomized experiments with noncompliance. Annals of Statistics 25, 305 – 327.en_US
dc.identifier.citedreferenceJanevic, M. R., Janz, N. K., Dodge, J. A., Lin, X., Pan, W., Sinco, B. R., and Clark, N. M. ( 2003 ). The role of choice in health education intervention trials: A review and case study. Social Science and Medicine 56, 1581 – 1594.en_US
dc.identifier.citedreferenceLittle, R. J. A. and Yau, L. ( 1998 ). Statistical techniques for analyzing data from prevention trials: Treatment of no-shows using Rubin's causal model. Psychological Methods 3, 147 – 159.en_US
dc.identifier.citedreferenceNagelkerke, N., Fidler, V., Bernsen, R., and Borgdor, M. ( 2000 ). Estimating treatment effects in randomized clinical trials in the presence of non-compliance. Statistics in Medicine 19, 1849 – 1864.en_US
dc.identifier.citedreferencePeng, Y., Little, R. J., and Raghunathan, T. ( 2004 ). An extended general location model for causal inferences from data subject to non-compliance and missing values. Biometrics 60, 598 – 608.en_US
dc.identifier.citedreferenceRobins, J. M. ( 1989 ). The analysis of randomized and nonrandomized AIDS treatment trials using a new approach to causal inference in longitudinal studies. In Health Service Research Methodology: A Focus on AIDS, L. Sechrest, H. Freeman, and A. Mulley ( eds ), 113 – 159. Washington, DC : U.S. Public Health Service.en_US
dc.identifier.citedreferenceRobins, J. M. and Greenland, S. ( 1996 ). Discussion of “Identification of causal effects using instrumental variables” by J. D. Angrist, G. W. Imbens, and D. B. Rubin. Journal of the American Statistical Association 91, 456 – 458.en_US
dc.identifier.citedreferenceRosenbaum, P. and Rubin, D. B. ( 1983 ). The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41 – 55.en_US
dc.identifier.citedreferenceRubin, D. B. ( 1974 ). Estimating causal effects of treatments in randomized and non-randomized studies. Journal of Educational Psychology 66, 688 – 701.en_US
dc.identifier.citedreferenceRubin, D. B. ( 1977 ). Assignment to a treatment group on the basis of a covariate. Journal of Educational Statistics 2, 1 – 26.en_US
dc.identifier.citedreferenceRubin, D. B. ( 1978 ). Bayesian inference for causal effects: The role of randomization. The Annals of Statistics 6, 34 – 58.en_US
dc.identifier.citedreferenceWhite I. R. ( 2005 ). Uses and limitations of randomization-based efficacy estimators. Statistical Methods in Medical Research 14, 327 – 347.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.