Show simple item record

A Thin Film Approach to Engineering Functionality into Oxides

dc.contributor.authorSchlom, Darrell G.en_US
dc.contributor.authorChen, Long-Qingen_US
dc.contributor.authorPan, Xiaoqingen_US
dc.contributor.authorSchmehl, Andreasen_US
dc.contributor.authorZurbuchen, Mark A.en_US
dc.date.accessioned2010-04-01T14:52:39Z
dc.date.available2010-04-01T14:52:39Z
dc.date.issued2008-08en_US
dc.identifier.citationSchlom, Darrell G.; Chen, Long-Qing; Pan, Xiaoqing; Schmehl, Andreas; Zurbuchen, Mark A. (2008). "A Thin Film Approach to Engineering Functionality into Oxides." Journal of the American Ceramic Society 91(8): 2429-2454. <http://hdl.handle.net/2027.42/65331>en_US
dc.identifier.issn0002-7820en_US
dc.identifier.issn1551-2916en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65331
dc.format.extent4688024 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights© 2008 American Ceramic Societyen_US
dc.titleA Thin Film Approach to Engineering Functionality into Oxidesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.contributor.affiliationotherDepartment of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-5005en_US
dc.contributor.affiliationotherExperimentalphysik VI, Elektronische Korrelationen und Magnetismus, Institut fÜr Physik, UniversitÄt Augsburg, D-86159 Augsburg, Germanyen_US
dc.contributor.affiliationotherThe Aerospace Corporation, Microelectronics Technology Department, El Segundo, California 90245en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65331/1/j.1551-2916.2008.02556.x.pdf
dc.identifier.doi10.1111/j.1551-2916.2008.02556.xen_US
dc.identifier.sourceJournal of the American Ceramic Societyen_US
dc.identifier.citedreferenceP. A. Salvador, A.-M. Haghiri-Gosnet, B. Mercey, M. Hervieu, and B. Raveau, “ Growth and Magnetoresistive Properties of (LaMnO 3 ) m (SrMnO 3 ) n Superlattices,” Appl. Phys. Lett., 75 [17] 2638 – 40 ( 1999 ).en_US
dc.identifier.citedreferenceT. Koida, M. Lippmaa, T. Fukumura, K. Itaka, Y. Matsumoto, M. Kawasaki, and H. Koinuma, “ Effect of A -Site Cation Ordering on the Magnetoelectric Properties in [(LaMnO 3 ) m /(SrMnO 3 ) m ] n Artificial Superlattices,” Phys. Rev. B, 66 [14] 144418 ( 2002 ).en_US
dc.identifier.citedreferenceH. Yamada, M. Kawasaki, T. Lottermoser, T. Arima, and Y. Tokura, “ LaMnO 3 /SrMnO 3 Interfaces with Coupled Charge-Spin-Orbital Modulation,” Appl. Phys. Lett., 89 [5] 052506 ( 2006 ).en_US
dc.identifier.citedreferenceA. Bhattacharya, X. Zhai, M. Warusawithana, J. N. Eckstein, and S. D. Bader, “ Signatures of Enhanced Ordering Temperatures in Digital Superlattices of (LaMnO 3 ) m /(SrMnO 3 ) 2 m,” Appl. Phys. Lett., 90 [22] 222503 ( 2007 ).en_US
dc.identifier.citedreferenceS. J. May, A. B. Shah, S. G. E. te Velthuis, M. R. Fitzsimmons, J. M. Zuo, X. Zhai, J. N. Eckstein, S. D. Bader, and A. Bhattacharya, “ Magnetically Asymmetric Interfaces in a LaMnO 3 /SrMnO 3 Superlattice due to Structural Asymmetries,” Phys. Rev. B, 77 [17] 174409 ( 2008 ).en_US
dc.identifier.citedreferenceA. Bhattacharya, S. J. May, S. G. E. te Velthuis, M. Warusawithana, X. Zhai, B. Jiang, J.-M. Zuo, M. R. Fitzsimmons, S. D. Bader, and J. N. Eckstein, “ Metal–Insulator Transition and Its Relation to Magnetic Structure in (LaMnO 3 ) 2 n /(SrMnO 3 ) n Superlattices,” Phys. Rev. Lett., 100 [25] 257203 ( 2008 ).en_US
dc.identifier.citedreferenceC. Adamo, X. Ke, P. Schiffer, A. Soukiassian, M. Warusawithana, L. Maritato, and D. G. Schlom, “ Electrical and Magnetic Properties of (SrMnO 3 ) n /(LaMnO 3 ) 2 n Superlattices,” Appl. Phys. Lett., 92 [11] 112508 ( 2008 ).en_US
dc.identifier.citedreferenceA. Ohtomo and H. Y. Hwang, “ A High-Mobility Electron Gas at the LaAlO 3 /SrTiO 3 Heterointerface,” Nature, 427 [6973] 423 – 6 ( 2004 ).en_US
dc.identifier.citedreferenceA. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, “ Magnetic Effects at the Interface Between Non-Magnetic Oxides,” Nat. Mater., 6 [7] 493 – 6 ( 2007 ).en_US
dc.identifier.citedreferenceN. Reyren, S. Thiel, A. D. Caviglia, L. Fitting Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. RÜetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, and J. Mannhart, “ Superconducting Interfaces Between Insulating Oxides,” Science, 317 [5842] 1196 – 9 ( 2007 ).en_US
dc.identifier.citedreferenceO. N. Tufte and P. W. Chapman, “ Electron Mobility in Semiconducting Strontium Titanate,” Phys. Rev., 155 [3] 796 – 802 ( 1967 ).en_US
dc.identifier.citedreferenceG. Petrich, S. von MolnÁr, and T. Penney, “ Exchange-Induced Autoionization in Eu-Rich EuO,” Phys. Rev. Lett., 26 [15] 885 – 8 ( 1971 ).en_US
dc.identifier.citedreferenceA. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, “ Superconductivity Above 130 K in the Hg–Ba–Ca–Cu–O System,” Nature, 363 [6424] 56 – 8 ( 1993 ).en_US
dc.identifier.citedreferenceI. Vrejoiu, G. Le Rhun, L. Pintilie, D. Hesse, M. Alexe, and U. GÖsele, “ Intrinsic Ferroelectric Properties of Strained Tetragonal PbZr 0.2 Ti 0.8 O 3 Obtained on Layer-by-Layer Grown, Defect-Free Single-Crystalline Films,” Adv. Mater., 18 [13] 1657 – 61 ( 2006 ).en_US
dc.identifier.citedreferenceJ. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “ Epitaxial BiFeO 3 Multiferroic Thin Film Heterostructures,” Science, 299 [5613] 1719 – 22 ( 2003 ).en_US
dc.identifier.citedreferenceJ. F. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A. P. Pyatakov, A. K. Zvezdin, and D. Viehland, “ Dramatically Enhanced Polarization in (001), (101), and (111) BiFeO 3 Thin Films due to Epitiaxial-Induced Transitions,” Appl. Phys. Lett., 84 [25] 5261 – 3 ( 2004 ).en_US
dc.identifier.citedreferenceR. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, F. Zavaliche, S. Y. Yang, R. Ramesh, Y. B. Chen, X. Q. Pan, X. Ke, M. S. Rzchowski, and S. K. Streiffer, “ Synthesis and Ferroelectric Properties of Epitaxial BiFeO 3 Thin Films Grown by Sputtering,” Appl. Phys. Lett., 88 [24] 242904 ( 2006 ).en_US
dc.identifier.citedreferenceJ. Dho, X. Qi, H. Kim, J. L. MacManus-Driscoll, and M. G. Blamire, “ Large Electric Polarization and Exchange Bias in Multiferroic BiFeO 3,” Adv. Mater., 18 [11] 1445 – 8 ( 2006 ).en_US
dc.identifier.citedreferenceS. E. Park and T. R. Shrout, “ Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals,” J. Appl. Phys., 82 [4] 1804 – 11 ( 1997 ).en_US
dc.identifier.citedreferenceB. T. Matthias, R. M. Bozorth, and J. H. Van Fleck, “ Ferromagnetic Interaction in EuO,” Phys. Rev. Lett., 7 [5] 160 – 1 ( 1961 ).en_US
dc.identifier.citedreferenceA. Maignan, C. Simon, V. Caignaert, and B. Raveau, “ Giant Magnetoresistance Ratios Superior to 10 11 in Manganese Perovskites,” Solid State Commun., 96 [9] 623 – 5 ( 1995 ).en_US
dc.identifier.citedreferenceR. M. Bozorth, E. F. Tilden, and A. J. Williams, “ Anisotropy and Magnetostriction of Some Ferrites,” Phys. Rev., 99 [6] 1788 – 98 ( 1955 ).en_US
dc.identifier.citedreferenceK. Y. Ahn and M. W. Shafer, “ Relationship Between Stoichiometry and Properties of EuO Films,” J. Appl. Phys., 41 [3] 1260 – 2 ( 1970 ).en_US
dc.identifier.citedreferenceR. J. Soulen Jr., J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J. M. D. Coey, “ Measuring the Spin Polarization of a Metal with a Superconducting Point Contact,” Science, 282 [5386] 85 – 8 ( 1998 ).en_US
dc.identifier.citedreferenceA. Anguelouch, A. Gupta, G. Xiao, G. X. Miao, D. W. Abraham, S. Ingvarsson, Y. Ji, and C. L. Chien, “ Properties of Epitaxial Chromium Dioxide Films Grown by Chemical Vapor Deposition Using a Liquid Precursor,” J. Appl. Phys., 91 [10] 7140 – 2 ( 2002 ).en_US
dc.identifier.citedreferenceN. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, and H. Kito, “ Ferroelectricity from Iron Valence Ordering in the Charge-Frustrated System LuFe 2 O 4,” Nature, 436 [4039] 1136 – 8 ( 2005 ).en_US
dc.identifier.citedreferenceC. J. Fennie, “ Ferroelectrically Induced Weak Ferromagnetism by Design,” Phys. Rev. Lett., 100 [16] 167203 ( 2008 ).en_US
dc.identifier.citedreferenceA. Moreira dos Santos, S. Parashar, A. R. Raju, Y. S. Zhao, A. K. Cheetham, and C. N. R. Rao, “ Evidence for the Likely Occurrence of Magnetoferroelectricity in the Simple Perovskite, BiMnO 3,” Solid State Commun., 122 [1–2] 49 – 52 ( 2002 ).en_US
dc.identifier.citedreferenceN. A. Hill and K. M. Rabe, “ First-Principles Investigation of Ferromagnetism and Ferroelectricity in Bismuth Manganite,” Phys. Rev. B, 59 [13] 8759 – 69 ( 1999 ).en_US
dc.identifier.citedreferenceA. Sharan, J. Lettieri, Y. Jia, W. Tian, X. Q. Pan, D. G. Schlom, and V. Gopalan, “ Bismuth Manganite : A Multiferroic with a Large Nonlinear Optical Response,” Phys. Rev. B, 69 [21] 214109 ( 2004 ).en_US
dc.identifier.citedreferenceP. Baettig, R. Seshadri, and N. A. Spaldin, “ Anti-Polarity in Ideal BiMnO 3,” J. Am. Chem. Soc., 129 [32] 9854 – 5 ( 2007 ).en_US
dc.identifier.citedreferenceR. D. Shannon, “ Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Cryst. A, 32 [5] 751 – 67 ( 1976 ).en_US
dc.identifier.citedreferenceK.-H. Hellwege and A. M. Hellwege, Landolt-BÖrnstein: Numerical Data and Functional Relationships in Science and Technology, Group III, Vol. 12a, pp. 126 – 206. Springer-Verlag, Berlin, 1978.en_US
dc.identifier.citedreferenceD. Balz and K. Plieth, “ Die Struktur des Kaliumnickelfluorids, K 2 NiF 4,” Z. Elektrochem., 59 [6] 545 – 51 ( 1955 ).en_US
dc.identifier.citedreferenceS. N. Ruddlesden and P. Popper, “ New Compounds of the K 2 NiF 4 Type,” Acta Cryst., 10 [8] 538 – 9 ( 1957 ).en_US
dc.identifier.citedreferenceS. N. Ruddlesden and P. Popper, “ The Compound Sr 3 Ti 2 O 7 and Its Structure,” Acta Cryst., 11 [1] 54 – 5 ( 1958 ).en_US
dc.identifier.citedreferenceY. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichtenberg, “ Superconductivity in a Layered Perovskite without Copper,” Nature, 372 [6506] 532 – 4 ( 1994 ).en_US
dc.identifier.citedreferenceA. Callaghan, C. W. Moeller, and R. Ward, “ Magnetic Interactions in Ternary Ruthenium Oxides,” Inorg. Chem., 5 [9] 1572 – 6 ( 1966 ).en_US
dc.identifier.citedreferenceO. Auciello, J. F. Scott, and R. Ramesh, “ The Physics of Ferroelectric Memories,” Phys. Today, 51 [7] 22 – 7 ( 1998 ).en_US
dc.identifier.citedreferenceJ. F. Scott, “ Applications of Modern Ferroelectrics,” Science, 315 [5814] 954 – 9 ( 2007 ).en_US
dc.identifier.citedreferenceM. A. Zurbuchen, R. S. Freitas, M. J. Wilson, P. Schiffer, M. Roeckerath, J. Schubert, M. D. Biegalski, G. H. Mehta, D. J. Comstock, J. H. Lee, Y. Jia, and D. G. Schlom, “ Synthesis and Characterization of an n =6 Aurivillius Phase Incorporating Magnetically Active Manganese, Bi 7 (Mn,Ti) 6 O 21,” Appl. Phys. Lett., 91 [3] 033113 ( 2007 ).en_US
dc.identifier.citedreferenceB. G. Hyde and S. Andersson, Inorganic Crystal Structures. Wiley-Interscience, New York, 1989.en_US
dc.identifier.citedreferenceC. N. R. Rao and B. Raveau, Transition Metal Oxides: Structure, Properties, and Synthesis of Ceramic Oxides, 2nd edition, pp. 61 – 226. Wiley-VCH, New York, 1998.en_US
dc.identifier.citedreferenceD. R. Veblen, “ Polysomatism and Polysomatic Series : A Review and Applications,” Am. Mineral., 76 [5–6] 801 – 26 ( 1991 ).en_US
dc.identifier.citedreferenceR. J. D. Tilley, “ An Electron Microscope Study of Perovskite-Related Oxides in the Sr–Ti–O System,” J. Solid State Chem., 21 [4] 293 – 301 ( 1977 ).en_US
dc.identifier.citedreferenceJ. L. Hutchison, J. S. Anderson, and C. N. R. Rao, “ Electron Microscopy of Ferroelectric Bismuth Oxides Containing Perovskite Layers,” Proc. R. Soc. London, Ser. A, 355 [1682] 301 – 12 ( 1977 ).en_US
dc.identifier.citedreferenceJ. Drennan, C. P. Tavares, and B. C. H. Steele, “ An Electron Microscope Investigation of Phases in the System La–Ni–O,” Mater. Res. Bull., 17 [5] 621 – 6 ( 1982 ).en_US
dc.identifier.citedreferenceJ. Gopalakrishnan, A. Ramanan, C. N. R. Rao, D. A. Jefferson, and D. J. Smith, “ A Homologous Series of Recurrent Intergrowth Structures of the Type Bi 4 A m + n −2 B m + n O 3( m + n )+6 Formed by Oxides of the Aurivillius Family,” J. Solid State Chem., 55 [1] 101 – 5 ( 1984 ).en_US
dc.identifier.citedreferenceD. A. Jefferson, M. K. Uppal, C. N. R. Rao, and D. J. Smith, “ Elastic Strain at the Solid-Solid Interface in Intergrowth Structures : A Novel Example of Partial Structure Refinement by HREM,” Mater. Res. Bull., 19 [11] 1403 – 9 ( 1984 ).en_US
dc.identifier.citedreferenceC. N. R. Rao and J. M. Thomas, “ Intergrowth Structures : The Chemistry of Solid–Solid Interfaces,” Acc. Chem. Res., 18, 113 – 9 ( 1985 ).en_US
dc.identifier.citedreferenceR. A. Mohan Ram, L. Ganapathi, P. Ganguly, and C. N. R. Rao, “ Evolution of Three-Dimensional Character across the La n +1 Ni n O 3 n +1 Homologous Series with Increase in n,” J. Solid State Chem., 63 [2] 139 – 47 ( 1986 ).en_US
dc.identifier.citedreferenceJ. M. Tarascon, W. R. McKinnon, P. Barboux, D. M. Hwang, B. G. Bagley, L. H. Greene, G. W. Hull, Y. LePage, N. Stoffel, and M. Giroud, “ Preparation, Structure, and Properties of the Superconducting Compound Series Bi 2 Sr 2 Ca n −1 Cu n O y with n =1, 2, and 3,” Phys. Rev. B, 38 [13] 8885 – 92 ( 1988 ).en_US
dc.identifier.citedreferenceB. Raveau, C. Michel, and M. Hervieu, “ Crystal Chemistry of Superconductive Bismuth and Thallium Cuprates ”; pp. 151 – 7 in Advances in Superconductivity: Proceedings of the 1st International Symposium on Superconductivity (ISS '88), Edited by K. Kitazawa, and T. Ishiguro. Springer-Verlag, Tokyo, 1989.en_US
dc.identifier.citedreferenceW. T. Fu, H. W. Zandbergen, Q. Xu, J. M. van Ruitenbeek, L. J. de Jongh, and G. van Tendeloo, “ Structural and Transport Properties of the Triple-Layer Compounds Ba 4 (Pb 1− x Bi x ) 3 O 10 (0≤ x <0.3),” Solid State Commun., 70 [12] 1117 – 21 ( 1989 ).en_US
dc.identifier.citedreferenceO. Eibl, “ Crystal Defects in Bi 2 Sr 2 Ca n −1 Cu n O 4+2 n +Δ Ceramics,” Physica C, 168 [1–2] 249 – 56 ( 1990 ).en_US
dc.identifier.citedreferenceR. Ramesh, S. Jin, and P. Marsh, “ Superconductor Defect Structure,” Nature, 346, 420 ( 1990 ).en_US
dc.identifier.citedreferenceA. Nozaki, H. Yoshikawa, T. Wada, H. Yamauchi, and S. Tanaka, “ Layered Perovskite Compounds Sr n +1 V n O 3 n +1 ( n =1, 2, 3, and ∞),” Phys. Rev. B, 43 [1] 181 – 5 ( 1991 ).en_US
dc.identifier.citedreferenceM. A. SeÑaris-Rodriguez, A. M. Chippindale, A. VÁrez, E. MorÁn, and M. A. Alario-Franco, “ A Novel ‘126’ Phase of the Family of Y 2 Ba 4 Cu 6+ n O 14+ n High-Temperature Superconducting Materials,” Physica C, 172 [5–6] 477 – 80 ( 1991 ).en_US
dc.identifier.citedreferenceR. J. Cava, T. Siegrist, B. Hessen, J. J. Krajewski, W. F. Peck Jr., B. Batlogg, H. Takagi, J. V. Waszczak, L. F. Schneemeyer, and H. W. Zandbergen, “ A New Homologous Series of Lanthanum Copper Oxides,” J. Solid State Chem., 94 [1] 170 – 84 ( 1991 ).en_US
dc.identifier.citedreferenceK. Hawkins and T. J. White, “ Defect Structure and Chemistry of (Ca x Sr 1− x ) n +1 Ti n O 3 n +1 Layer Perovskites,” Philos. Trans. R. Soc. London, Ser. A, 336 [1644] 541 – 69 ( 1991 ).en_US
dc.identifier.citedreferenceT. Williams, F. Lichtenberg, A. Reller, and G. Bednorz, “ New Layered Perovskites in the Sr–Ru–O System : A Transmission Electron Microscope Study,” Mater. Res. Bull., 26 [8] 763 – 70 ( 1991 ).en_US
dc.identifier.citedreferenceM. čeh, V. KraŠevec, and D. Kolar, “ A Transmission Electron Microscope Study of SrO-Doped CaTiO 3,” J. Solid State Chem., 103 [1] 263 – 8 ( 1993 ).en_US
dc.identifier.citedreferenceS. Adachi, H. Yamauchi, S. Tanaka, and N. MÔri, “ New Superconducting Cuprates in the Sr–Ca–Cu–O System,” Physica C, 212 [1–2] 164 – 8 ( 1993 ).en_US
dc.identifier.citedreferenceZ. Hiroi, M. Takano, M. Azuma, and Y. Takeda, “ A New Family of Copper Oxide Superconductors Sr n +1 Cu n O 2 n +1+Δ Stabilized at High Pressure,” Nature, 364 [6435] 315 – 7 ( 1993 ).en_US
dc.identifier.citedreferenceX.-J. Wu, S. Adachi, C.-Q. Jin, H. Yamauchi, and S. Tanaka, “ Novel Homologous Series of Superconducting Copper Oxides, Cu-12( n −1) n,” Physica C, 223 [3–4] 243 – 8 ( 1994 ).en_US
dc.identifier.citedreferenceP. Laffez, G. Van Tendeloo, R. Seshadri, M. Hervieu, C. Martin, A. Maignan, and B. Raveau, “ Microstructural and Physical Properties of Layered Manganites Oxides Related to the Magnetoresistive Perovskites,” J. Appl. Phys., 80 [10] 5850 – 6 ( 1996 ).en_US
dc.identifier.citedreferenceM. A. McCoy, R. W. Grimes, and W. E. Lee, “ Phase Stability and Interfacial Structures in the SrO–SrTiO 3 System,” Philos. Mag. A, 75 [3] 833 – 46 ( 1997 ).en_US
dc.identifier.citedreferenceR. Seshadri, M. Hervieu, C. Martin, A. Maignan, B. Domenges, B. Raveau, and A. N. Fitch, “ Study of the Layered Magnetoresistive Perovskite La 1.2 Sr 1.8 Mn 2 O 7 by High-Resolution Electron Microscopy and Synchrotron X-Ray Powder Diffraction,” Chem. Mater., 9 [8] 1778 – 87 ( 1997 ).en_US
dc.identifier.citedreferenceS. D. Bader, R. M. Osgood III, D. J. Miller, J. F. Mitchell, and J. S. Jiang, “ Role of Intergrowths in the Properties of Naturally Layered Manganite Single Crystals,” J. Appl. Phys., 83 [11] 6385 – 9 ( 1998 ).en_US
dc.identifier.citedreferenceJ. Sloan, P. D. Battle, M. A. Green, M. J. Rosseinsky, and J. F. Vente, “ A HRTEM Study of the Ruddlesden-Popper Compositions Sr 2 Ln Mn 2 O 7 ( Ln =Y, La, Nd, Eu, Ho),” J. Solid State Chem., 138 [1] 135 – 40 ( 1998 ).en_US
dc.identifier.citedreferenceK. Szot and W. Speier, “ Surfaces of Reduced and Oxidized SrTiO 3 from Atomic Force Microscopy,” Phys. Rev. B, 60 [8] 5909 – 26 ( 1999 ).en_US
dc.identifier.citedreferenceG. Trolliard, N. TÉnÈze, P. Boullay, and D. Mercurio, “ TEM Study of Cation-Deficient-Perovskite Related A n B n −1 O 3 n Compounds : The Twin-Shift Option,” J. Solid State Chem., 177 [4–5] 1188 – 96 ( 2004 ).en_US
dc.identifier.citedreferenceK. R. Udayakumar and A. N. Cormack, “ Structural Aspects of Phase Equilibria in the Strontium-Titanium-Oxygen System,” J. Am. Ceram. Soc., 71, C-469 – 71 ( 1988 ).en_US
dc.identifier.citedreferenceK. R. Udayakumar and A. N. Cormack, “ Non-Stoichiometry in Alkaline Earth Excess Alkaline Earth Titanates,” J. Phys. Chem. Solids, 50 [1] 55 – 60 ( 1989 ).en_US
dc.identifier.citedreferenceY. Tokura, “ Correlated-Electron Physics in Transition-Metal Oxides,” Phys. Today, 56 [7] 50 – 5 ( 2003 ).en_US
dc.identifier.citedreferenceD. G. Schlom and J. S. Harris Jr., “ MBE Growth of High T c Superconductors ”; pp. 505 – 622 in Molecular Beam Epitaxy: Applications to Key Materials, Edited by R. F. C. Farrow. Park Ridge, Noyes, 1995.en_US
dc.identifier.citedreferenceJ. H. Haeni, C. D. Theis, D. G. Schlom, W. Tian, X. Q. Pan, H. Chang, I. Takeuchi, and X.-D. Xiang, “ Epitaxial Growth of the First Five Members of the Sr n +1 Ti n O 3 n +1 Ruddlesden–Popper Homologous Series,” Appl. Phys. Lett., 78 [21] 3292 – 4 ( 2001 ).en_US
dc.identifier.citedreferenceW. Tian, X. Q. Pan, J. H. Haeni, and D. G. Schlom, “ Transmission Electron Microscopy Study of n =1–5 Sr n +1 Ti n O 3 n +1 Epitaxial Thin Films,” J. Mater. Res., 16 [7] 2013 – 26 ( 2001 ).en_US
dc.identifier.citedreferenceD. G. Schlom, J. H. Haeni, J. Lettieri, C. D. Theis, W. Tian, J. C. Jiang, and X. Q. Pan, “ Oxide Nano-Engineering Using MBE,” Mater. Sci. Eng. B, 87 [3] 282 – 91 ( 2001 ).en_US
dc.identifier.citedreferenceW. Tian, J. H. Haeni, D. G. Schlom, E. Hutchinson, B. L. Sheu, M. M. Rosario, P. Schiffer, Y. Liu, M. A. Zurbuchen, and X. Q. Pan, “ Epitaxial Growth and Magnetic Properties of the First Five Members of the Layered Sr n +1 Ru n O 3 n +1 Oxide Series,” Appl. Phys. Lett., 90 [2] 022507 ( 2007 ).en_US
dc.identifier.citedreferenceJ. G. Bednorz and K. A. MÜller, “ Possible High T c Superconductivity in the Ba–La–Cu–O System,” Z. Phys. B, 64 [2] 189 – 93 ( 1986 ).en_US
dc.identifier.citedreferenceJ. G. Bednorz, M. Takashige, and K. A. MÜller, “ Susceptibility Measurements Support High- T c Superconductivity in the Ba–La–Cu–O System,” Europhys. Lett., 3 [3] 379 – 85 ( 1987 ).en_US
dc.identifier.citedreferenceD. Dijkkamp, T. Venkatesan, X. D. Wu, S. A. Shaheen, N. Jisrawi, Y. H. Min-Lee, W. L. McLean, and M. Croft, “ Preparation of Y–Ba–Cu Oxide Superconductor Thin Films using Pulsed Laser Evaporation from High T c Bulk Material,” Appl. Phys. Lett., 51 [8] 619 – 21 ( 1987 ).en_US
dc.identifier.citedreferenceX. D. Wu, A. Inam, T. Venkatesan, C. C. Chang, E. W. Chase, P. Barboux, J. M. Tarascon, and B. Wilkens, “ Low-Temperature Preparation of High T c Superconducting Thin Films,” Appl. Phys. Lett., 52 [9] 754 – 6 ( 1988 ).en_US
dc.identifier.citedreferenceR. Ramesh, K. Luther, B. Wilkens, D. L. Hart, E. Wang, J. M. Tarascon, A. Inam, X. D. Wu, and T. Venkatesan, “ Epitaxial Growth of Ferroelectric Bismuth Titanate Thin Films by Pulsed Laser Deposition,” Appl. Phys. Lett., 57 [15] 1505 – 7 ( 1990 ).en_US
dc.identifier.citedreferenceD. B. Chrisey, and G. K. Hubler (ed), Pulsed Laser Deposition of Thin Films. Wiley, New York, 1994.en_US
dc.identifier.citedreferenceT. Frey, C. C. Chi, C. C. Tsuei, T. Shaw, and F. Bozso, “ Effect of Atomic Oxygen on the Initial Growth Mode in Thin Epitaxial Cuprate Films,” Phys. Rev. B, 49 [5] 3483 – 91 ( 1994 ).en_US
dc.identifier.citedreferenceG. Koster, G. J. H. M. Rijnders, D. H. A. Blank, and H. Rogalla, “ Imposed Layer-by-Layer Growth by Pulsed Laser Interval Deposition,” Appl. Phys. Lett., 74 [24] 3729 – 31 ( 1999 ).en_US
dc.identifier.citedreferenceU. Poppe, J. Schubert, R. R. Arons, W. Evers, C. H. Freiburg, W. Reichert, K. Schmidt, W. Sybertz, and K. Urban, “ Direct Production of Crystalline Superconducting Thin Films of YBa 2 Cu 3 O 7 by High-Pressure Oxygen Sputtering,” Solid State Commun., 66 [6] 661 – 5 ( 1988 ).en_US
dc.identifier.citedreferenceH. C. Li, G. Linker, F. Ratzel, R. Smithey, and J. Geerk, “ In Situ Preparation of Y–Ba–Cu–O Superconducting Thin Films by Magnetron Sputtering,” Appl. Phys. Lett., 52 [13] 1098 – 100 ( 1988 ).en_US
dc.identifier.citedreferenceB. Pachaly, R. Bruchhaus, D. Pitzer, H. Huber, W. Wersing, and F. Koch, “ Pyroelectric Properties of Lead Titanate Thin Films deposited on Pt-Coated Si Wafers by Multi-Target Sputtering,” Integr. Ferroelectrics, 5 [4] 333 – 8 ( 1994 ).en_US
dc.identifier.citedreferenceP. Muralt, T. Maeder, L. Sagalowicz, S. Hiboux, S. Scalese, D. Naumovic, R. G. Agostino, N. Xanthopoulos, H. J. Mathieu, L. Patthey, and E. L. Bullock, “ Texture Control of PbTiO 3 and Pb(Zr,Ti)O 3 Thin Films with TiO 2 Seeding,” J. Appl. Phys., 83 [7] 3835 – 41 ( 1998 ).en_US
dc.identifier.citedreferenceT. Maeder, P. Muralt, and L. Sagalowicz, “ Growth of (111)-Oriented PZT on RuO 2 (100)/Pt(111) Electrodes by In-Situ Sputtering,” Thin Solid Films, 345 [2] 300 – 6 ( 1999 ).en_US
dc.identifier.citedreferenceN. K. Pervez, P. J. Hansen, and R. A. York, “ High Tunability Barium Strontium Titanate Thin Films for RF Circuit Applications,” Appl. Phys. Lett., 85 [19] 4451 – 3 ( 2004 ).en_US
dc.identifier.citedreferenceH. Koinuma, M. Kawasaki, M. Funabashi, T. Hasegawa, K. Kishio, K. Kitazawa, K. Fueki, and S. Nagata, “ Preparation of Superconducting Thin Films of (La 1− x Sr x ) y CuO 4− Δ by Sputtering,” J. Appl. Phys., 62 [4] 1524 – 6 ( 1987 ).en_US
dc.identifier.citedreferenceR. L. Sandstrom, W. J. Gallagher, T. R. Dinger, R. H. Koch, R. B. Laibowitz, A. W. Kleinsasser, R. J. Gambino, B. Bumble, and M. F. Chisholm, “ Reliable Single-Target Sputtering Process for High-Temperature Superconducting Films and Devices,” Appl. Phys. Lett., 53 [5] 444 – 6 ( 1988 ).en_US
dc.identifier.citedreferenceX. X. Xi, G. Linker, O. Meyer, E. Nold, B. Obst, F. Ratzel, R. Smithey, B. Strehlau, F. Weschenfelder, and J. Geerk, “ Superconducting and Structural Properties of YBaCuO Thin Films Deposited by Inverted Cylindrical Magnetron Sputtering,” Z. Phys. B, 74 [1] 13 – 9 ( 1989 ).en_US
dc.identifier.citedreferenceC. B. Eom, J. Z. Sun, K. Yamamoto, A. F. Marshall, K. E. Luther, T. H. Geballe, and S. S. Laderman, “ In Situ Grown YBa 2 Cu 3 O 7− d Thin Films from Single-Target Magnetron Sputtering,” Appl. Phys. Lett., 55 [6] 595 – 7 ( 1989 ).en_US
dc.identifier.citedreferenceC. B. Eom, R. B. Van Dover, J. M. Phillips, D. J. Werder, J. H. Marshall, C. H. Chen, R. J. Cava, R. M. Fleming, and D. K. Fork, “ Fabrication and Properties of Epitaxial Ferroelectric Heterostructures with (SrRuO 3 ) Isotropic Metallic Oxide Electrodes,” Appl. Phys. Lett., 63 [18] 2570 – 2 ( 1993 ).en_US
dc.identifier.citedreferenceC. H. Ahn, J.-M. Triscone, N. Archibald, M. Decroux, R. H. Hammond, T. H. Geballe, O. Fischer, and M. R. Beasley, “ Ferroelectric Field Effect in Epitaxial Thin Film Oxide SrCuO 2 /Pb(Zr 0.52 Ti 0.48 )O 3 Heterostructures,” Science, 269 [5222] 373 – 6 ( 1995 ).en_US
dc.identifier.citedreferenceJ.-M. Triscone, L. Frauchiger, M. Decroux, L. Mieville, O. Fischer, C. Beeli, P. Stadelmann, and G.-A. Racine, “ Growth and Structural Properties of Epitaxial Pb(Zr x Ti 1− x )O 3 Films and Pb(Zr x Ti 1− x )O 3 -Cuprate Heterostructures,” J. Appl. Phys., 79 [8] 4298 – 305 ( 1996 ).en_US
dc.identifier.citedreferenceS. D. Bu, M. K. Lee, C. B. Eom, W. Tian, X. Q. Pan, S. K. Streiffer, and J. J. Krajewski, “ Perovskite Phase Stabilization in Epitaxial Pb(Mg 1/3 Nb 2/3 )O 3 –PbTiO 3 Films by Deposition onto Vicinal (001) SrTiO 3 Substrates,” Appl. Phys. Lett., 79 [21] 3482 – 4 ( 2001 ).en_US
dc.identifier.citedreferenceD. K. Lathrop, S. E. Russek, and R. A. Buhrman, “ Production of YBa 2 Cu 3 O 7− y Superconducting Thin Films in Situ by High-Pressure Reactive Evaporation and Rapid Thermal Annealing,” Appl. Phys. Lett., 51 [19] 1554 – 6 ( 1987 ).en_US
dc.identifier.citedreferenceT. Terashima, K. Iijima, K. Yamamoto, Y. Bando, and H. Mazaki, “ Single-Crystal YBa 2 Cu 3 O 7− x Thin Films by Activated Reactive Evaporation,” Jpn. J. Appl. Phys., Part 2, 27 [1] L91 – 3 ( 1988 ).en_US
dc.identifier.citedreferenceP. Berberich, B. Utz, W. Prusseit, and H. Kinder, “ Homogeneous High Quality YBa 2 Cu 3 O 7 Films on 3′ and 4′ Substrates,” Physica C, 219 [3–4] 497 – 504 ( 1994 ).en_US
dc.identifier.citedreferenceD. G. Schlom, J. N. Eckstein, E. S. Hellman, C. Webb, F. Turner, J. S. Harris Jr., M. R. Beasley, and T. H. Geballe, “ Molecular Beam Epitaxy of Layered Dy–Ba–Cu–O Compounds ”; pp. 197 – 200 in Extended Abstracts, High-Temperature Superconductors II, Edited by D. W. Capone II, W. H. Butler, B. Batlogg, and C. W. Chu. Materials Research Society, Pittsburgh, 1988.en_US
dc.identifier.citedreferenceR. J. Spah, H. F. Hess, H. L. Stormer, A. E. White, and K. T. Short, “ Parameters for in Situ Growth of High T c Superconducting Thin Films Using an Oxygen Plasma Source,” Appl. Phys. Lett., 53 [5] 441 – 3 ( 1988 ).en_US
dc.identifier.citedreferenceD. G. Schlom, J. N. Eckstein, E. S. Hellman, S. K. Streiffer, J. S. Harris Jr., M. R. Beasley, J. C. Bravman, T. H. Geballe, C. Webb, K. E. von Dessonneck, and F. Turner, “ Molecular Beam Epitaxy of Layered Dy–Ba–Cu–O Compounds,” Appl. Phys. Lett., 53 [17] 1660 – 2 ( 1988 ).en_US
dc.identifier.citedreferenceJ. Kwo, M. Hong, D. J. Trevor, R. M. Fleming, A. E. White, R. C. Farrow, A. R. Kortan, and K. T. Short, “ In Situ Epitaxial Growth of Y 1 Ba 2 Cu 3 O 7− x Films by Molecular Beam Epitaxy with an Activated Oxygen Source,” Appl. Phys. Lett., 53 [26] 2683 – 5 ( 1988 ).en_US
dc.identifier.citedreferenceJ. Eckstein and I. Bozovic, “ High-Temperature Superconducting Multilayers and Heterostructures Grown by Atomic Layer-By-Layer Molecular Beam Epitaxy,” Annu. Rev. Mater. Sci., 25, 679 – 709 ( 1995 ).en_US
dc.identifier.citedreferenceI. Bozovic and D. G. Schlom, “ Superconducting Thin Films : Materials, Preparation, and Properties ”; pp. 8955 – 64 in The Encyclopedia of Materials: Science and Technology. Edited by K. H. J. Buschow, R. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and P. Veyssiere. Pergamon, Amsterdam, 2001.en_US
dc.identifier.citedreferenceC. D. Theis, J. Yeh, D. G. Schlom, M. E. Hawley, and G. W. Brown, “ Adsorption-Controlled Growth of PbTiO 3 by Reactive Molecular Beam Epitaxy,” Thin Solid Films 325 [1–2] 107 – 14 ( 1998 ).en_US
dc.identifier.citedreferenceM. R. Warusawithana, E. V. Colla, J. N. Eckstein, with M. B. Weissman, “ Artificial Dielectric Superlattices with Broken Inversion Symmetry,” Phys. Rev. Lett., 90 [3] 036802 ( 2003 ).en_US
dc.identifier.citedreferenceJ. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, and D. G. Schlom, “ Room-Temperature Ferroelectricity in Strained SrTiO 3,” Nature, 430 [7001] 758 – 61 ( 2004 ).en_US
dc.identifier.citedreferenceT. Terashima, K. Shimura, Y. Bando, Y. Matsuda, A. Fujiyama, and S. Komiyama, “ Superconductivity of One-Unit-Cell Thick YBa 2 Cu 3 O 7 Thin Film,” Phys. Rev. Lett., 67 [10] 1362 – 5 ( 1991 ).en_US
dc.identifier.citedreferenceA. Roelofs, T. Schneller, K. Szot, and R. Waser, “ Piezoresponse Force Microscopy of Lead Titanate Nanograins Possibly Reaching the Limit of Ferroelectricity,” Appl. Phys. Lett., 81 [27] 5231 – 3 ( 2002 ).en_US
dc.identifier.citedreferenceI. Bozovic, G. Logvenov, M. A. J. Verhoeven, P. Caputo, E. Goldobin, and T. H. Geballe, “ No Mixing of Superconductivity and Antiferromagnetism in a High-Temperature Superconductor,” Nature, 422 [6934] 873 – 5 ( 2003 ).en_US
dc.identifier.citedreferenceJ.-M. Triscone, M. G. Karkut, L. Antognazza, O. Brunner, and Ø. Fischer, “ Y–Ba–Cu–O/Dy–Ba–Cu–O Superlattices : A First Step Towards the Artificial Construction of High- T c Superconductors,” Phys. Rev. Lett., 63 [9] 1016 – 9 ( 1989 ).en_US
dc.identifier.citedreferenceD. G. Schlom, J. N. Eckstein, I. Bozovic, Z. J. Chen, A. F. Marshall, K. E. von Dessonneck, and J. S. Harris Jr., “ Molecular Beam Epitaxy—A Path to Novel High T c Superconductors? ”; pp. 234 – 47 in Growth of Semiconductor Structures and High-T c Thin Films on Semiconductors, edited by A. Madhukar, SPIE, Vol. 1285. SPIE, Bellingham, 1990.en_US
dc.identifier.citedreferenceD. H. Lowndes, D. P. Norton, and J. D. Budai, “ Superconductivity in Nonsymmetric Epitaxial YBa 2 Cu 3 O 7− x /PrBa 2 Cu 3 O 7− x Superlattices : The Superconducting Behavior of Cu–O Bilayers,” Phys. Rev. Lett., 65 [9] 1160 – 3 ( 1990 ).en_US
dc.identifier.citedreferenceS. J. Pennycook, M. F. Chisholm, D. E. Jesson, D. P. Norton, D. H. Lowndes, R. Feenstra, H. R. Kerchner, and J. O. Thomson, “ Interdiffusion, Growth Mechanisms, and Critical Currents in YBa 2 Cu 3 O 7− x /PrBa 2 Cu 3 O 7− x Superlattices,” Phys. Rev. Lett., 67 [6] 765 – 8 ( 1991 ).en_US
dc.identifier.citedreferenceK. Kamigaki, T. Terashima, K. Shimura, Y. Bando, and H. Terauchi, “ Unit Cell-by-Unit Cell Grown (YBa 2 Cu 3 O 7−Δ ) 1 /(PrBa 2 Cu 3 O 7−Δ ) 1 Superlattice,” Physica C, 183 [4–6] 252 – 6 ( 1991 ).en_US
dc.identifier.citedreferenceH. Tabata, T. Kawai, and S. Kawai, “ Crystal Structure and Superconductivity of (La,Sr) 2 CuO 4 /Sm 2 CuO 4 Superlattices Prepared by Excimer Laser Deposition,” Appl. Phys. Lett., 58 [13] 1443 – 5 ( 1991 ).en_US
dc.identifier.citedreferenceI. Bozovic and J. N. Eckstein, “ Superconducting Superlattices ”; pp. 99 – 207 in Physical Properties of High Temperature Superconductors V, Edited by D. M. Ginsberg. World Scientific, Singapore, 1996.en_US
dc.identifier.citedreferenceJ-M. Triscone and Ø. Fischer, “ Superlattices of High-Temperature Superconductors : Synthetically Modulated Structures, Critical Temperatures and Vortex Dynamics,” Rep. Prog. Phys., 60 [12] 1673 – 721 ( 1997 ).en_US
dc.identifier.citedreferenceG. Koster, K. Verbist, G. Rijnders, H. Rogalla, G. van Tendeloo, and D. H. A. Blank, “ Structure and Properties of (Sr,Ca)CuO 2 –BaCuO 2 Superlattices Grown by Pulsed Laser Interval Deposition,” Physica C, 353 [3–4] 167 – 83 ( 2001 ).en_US
dc.identifier.citedreferenceH. Yamamoto, M. Naito, and H. Sato, “ New Superconducting Cuprate Prepared by Low-Temperature Thin-Film Synthesis in a Ba–Cu–O System,” Jpn. J. Appl. Phys., Part 2, 36 [3B] L341 – 4 ( 1997 ).en_US
dc.identifier.citedreferenceB. S. Kwak, E. P. Boyd, and A. Erbil, “ Metalorganic Chemical Vapor Deposition of PbTiO 3 Thin Films,” Appl. Phys. Lett., 53 [18] 1702 – 4 ( 1988 ).en_US
dc.identifier.citedreferenceM. Okada, S. Takai, M. Amemiya, and K. Tominaga, “ Preparation of c -Axis-Oriented PbTiO 3 Thin Films by MOCVD Under Reduced Pressure,” Jpn. J. Appl. Phys., Part 1, 28 [6] 1030 – 4 ( 1989 ).en_US
dc.identifier.citedreferenceM. de Keijser, G. J. M. Dormans, J. F. M. Cillessen, D. M. de Leeuw, and H. W. Zandbergen, “ Epitaxial PbTiO 3 Thin Films Grown by Organometallic Chemical Vapor Deposition,” Appl. Phys. Lett., 58 [23] 2636 – 8 ( 1991 ).en_US
dc.identifier.citedreferenceK. Fujii, H. Zama, and S. Oda, “ Preparation of YBa 2 Cu 3 O x Thin Films by Layer-by-Layer Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys., Part 2, 31 [6B] L787 – 9 ( 1992 ).en_US
dc.identifier.citedreferenceG. R. Bai, H. L. M. Chang, H. K. Kim, C. M. Foster, and D. J. Lam, “ Epitaxy-Induced Phase of Near-Stoichiometry PbTiO 3 Films Prepared by Metalorganic Chemical Vapor Deposition,” Appl. Phys. Lett., 61 [4] 408 – 10 ( 1992 ).en_US
dc.identifier.citedreferenceG. J. M. Dormans, P. J. van Veldhoven, and M. de Keijser, “ Composition-Controlled Growth of PbTiO 3 on SrTiO 3 by Organometallic Chemical Vapour Deposition,” J. Cryst. Growth, 123 [3–4] 537 – 44 ( 1992 ).en_US
dc.identifier.citedreferenceZ. Li, C. M. Foster, D. Guo, H. Zhang, G. R. Bai, P. M. Baldo, and L. E. Rehn, “ Growth of High Quality Single-Domain Single-Crystal Films of PbTiO 3,” Appl. Phys. Lett., 65 [9] 1106 – 8 ( 1994 ).en_US
dc.identifier.citedreferenceM. de Keijser and G. J. M. Dormans, “ Modelling of Organometallic Chemical Vapour Deposition of Lead Titanate,” J. Cryst. Growth, 149 [3–4] 215 – 28 ( 1995 ).en_US
dc.identifier.citedreferenceM. de Keijser and G. J. M. Dormans, “ Chemical Vapor Deposition of Electroceramic Thin Films,” MRS Bull., 21 [6] 37 – 43 ( 1996 ).en_US
dc.identifier.citedreferenceC. M. Foster, “ Chemical Vapor Deposition of Ferroelectric Thin Films ;” pp. 167 – 97 in Thin Film Ferroelectric Materials and Devices, Edited by R. Ramesh. Kluwer, Boston, 1997.en_US
dc.identifier.citedreferenceG.-R. Bai, I.-F. Tsu, A. Wang, C. M. Foster, C. E. Murray, and V. P. Dravid, “ In Situ Growth of Highly Oriented Pb(Zr 0.5 Ti 0.5 )O 3 Thin Films by Low-Temperature Metal-Organic Chemical Vapor Deposition,” Appl. Phys. Lett., 72 [13] 1572 – 4 ( 1998 ).en_US
dc.identifier.citedreferenceJ. F. Roeder, T. H. Baum, S. M. Bilodeau, G. T. Stauf, C. Ragaglia, M. W. Russell, and P. C. Van Buskirk, “ Liquid-Delivery MOCVD : Chemical and Process Perspectives on Ferroelectric Thin Film Growth,” Adv. Mater. Opt. Electron., 10 [3–5] 145 – 54 ( 2000 ).en_US
dc.identifier.citedreferenceM. V. Ramana Murty, S. K. Streiffer, G. B. Stephenson, J. A. Eastman, G.-R. Bai, A. Munkholm, O. Auciello, and C. Thompson, “ In Situ X-Ray Scattering Study of PbTiO 3 Chemical-Vapor Deposition,” Appl. Phys. Lett., 80 [10] 1809 – 11 ( 2002 ).en_US
dc.identifier.citedreferenceK. Saito, I. Yamaji, T. Akai, M. Mitsuya, and H. Funakubo, “ Quantitative Effects of Preferred Orientation and Impurity Phases on Ferroelectric Properties of SrBi 2 (Ta 1− x Nb x ) 2 O 9 Thin Films Measured by X-ray Diffraction Reciprocal Space Mapping,” Jpn. J. Appl. Phys., Part 1, 42 [2A] 539 – 43 ( 2003 ).en_US
dc.identifier.citedreferenceA. Nagai, H. Morioka, G. Asano, H. Funakubo, and A. Saiki, “ Preparing Pb(Zr,Ti)O 3 Films Less than 100 nm Thick by Low-Temperature Metalorganic Chemical Vapor Deposition,” Appl. Phys. Lett., 86 [14] 142906 ( 2005 ).en_US
dc.identifier.citedreferenceY. K. Kim, H. Morioka, R. Ueno, S. Yokoyama, and H. Funakubo, “ Comparison of Electrical Properties of (100)/(001)-Oriented Epitaxial Pb(Zr 0.35,Ti 0.65 )O 3 Thin Films with the same (001) Domain Fraction Grown on (100)Si and (100)SrTiO 3 Substrates,” Appl. Phys. Lett., 86 [21] 212905 ( 2005 ).en_US
dc.identifier.citedreferenceJ. Fukushima, K. Kodaira, and T. Matsushita, “ Preparation of Ferroelectric PZT Films by Thermal Decomposition of Organometallic Compounds,” J. Mater. Sci., 19 [2] 595 – 8 ( 1984 ).en_US
dc.identifier.citedreferenceK. D. Budd, S. K. Dey, and D. A. Payne, “ Sol–Gel Processing of PbTiO 3, PbZrO 3, PZT, and PLZT Thin Films,” Br. Ceram. Proc., 36, 107 – 21 ( 1985 ).en_US
dc.identifier.citedreferenceR. W. Schwartz, “ Chemical Solution Deposition of Perovskite Thin Films,” Chem. Mater., 9 [11] 2325 – 40 ( 1997 ).en_US
dc.identifier.citedreferenceA. I. Kingon and S. Srinivasan, “ Lead Zirconate Titanate Thin Films Directly on Copper Electrodes for Ferroelectric, Dielectric and Piezoelectric Applications,” Nat. Mater., 4 [3] 233 – 7 ( 2005 ).en_US
dc.identifier.citedreferenceM. D. Losego, L. H. Jimison, J. F. Ihlefeld, and J.-P. Maria, “ Ferroelectric Response from Lead Zirconate Titanate Thin Films Prepared Directly on Low-Resistivity Copper Substrates,” Appl. Phys. Lett., 86 [17] 172906 ( 2005 ).en_US
dc.identifier.citedreferenceK. Iijima, T. Terashima, Y. Bando, K. Kamigaki, and H. Terauchi, “ Atomic Layer Growth of Oxide Thin Films with Perovskite-Type Structure by Reactive Evaporation,” J. Appl. Phys., 72 [7] 2840 – 5 ( 1992 ).en_US
dc.identifier.citedreferenceH.-M. Christen, L. A. Boatner, J. D. Budai, M. F. Chisholm, L. A. GÉa, P. J. Marrero, and D. P. Norton, “ The Growth and Properties of Epitaxial KNbO 3 Thin Films and KNbO 3 /KTaO 3 Superlattices,” Appl. Phys. Lett., 68 [11] 1488 – 90 ( 1996 ).en_US
dc.identifier.citedreferenceJ. C. Jiang, X. Q. Pan, W. Tian, C. D. Theis, and D. G. Schlom, “ Abrupt PbTiO 3 /SrTiO 3 Superlattices Grown by Reactive Molecular Beam Epitaxy,” Appl. Phys. Lett., 74 [19] 2851 – 3 ( 1999 ).en_US
dc.identifier.citedreferenceA. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, “ Artificial Charge-Modulation in Atomic-Scale Perovskite Titanate Superlattices,” Nature, 419 [6905] 378 – 80 ( 2002 ).en_US
dc.identifier.citedreferenceD. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, “ Atomic-Scale Imaging of Nanoengineered Oxygen Vacancy Profiles in SrTiO 3,” Nature, 430 [7000] 657 – 61 ( 2004 ).en_US
dc.identifier.citedreferenceC. H. Ahn, K. M. Rabe, and J.-M. Triscone, “ Ferroelectricity at the Nanoscale : Local Polarization in Oxide Thin Films and Heterostructures,” Science, 303 [5657] 488 – 91 ( 2004 ).en_US
dc.identifier.citedreferenceH. N. Lee, H. M. Christen, M. F. Chisholm, C. M. Rouleau, and D. H. Lowndes, “ Strong Polarization Enhancement in Asymmetric Three-Component Ferroelectric Superlattices,” Nature, 433 [7024] 395 – 9 ( 2005 ).en_US
dc.identifier.citedreferenceM. Dawber, C. Lichtensteiger, M. Cantoni, M. Veithen, P. Ghosez, K. Johnston, K. M. Rabe, and J.-M. Triscone, “ Unusual Behavior of the Ferroelectric Polarization in PbTiO 3 /SrTiO 3 Superlattices,” Phys. Rev. Lett., 95 [17] 177601 ( 2005 ).en_US
dc.identifier.citedreferenceD. A. Tenne, A. Bruchhausen, N. D. Lanzillotti-Kimura, A. Fainstein, R. S. Katiyar, A. Cantarero, A. Soukiassian, V. Vaithyanathan, J. H. Haeni, W. Tian, D. G. Schlom, K. J. Choi, D. M. Kim, C. B. Eom, H. P. Sun, X. Q. Pan, Y. L. Li, L. Q. Chen, Q. X. Jia, S. M. Nakhmanson, K. M. Rabe, and X. X. Xi, “ Probing Nanoscale Ferroelectricity by Ultraviolet Raman Spectroscopy,” Science, 313 [5793] 1614 – 6 ( 2006 ).en_US
dc.identifier.citedreferenceY. Jia, M. A. Zurbuchen, S. Wozniak, A. H. Carim, D. G. Schlom, L.-N. Zou, S. Briczinski, and Y. Liu, “ Epitaxial Growth of Metastable Ba 2 RuO 4 Films with the K 2 NiF 4 Structure,” Appl. Phys. Lett., 74 [25] 3830 – 2 ( 1999 ).en_US
dc.identifier.citedreferenceO. Y. Gorbenko, S. V. Samoilenkov, I. E. Graboy, and A. R. Kaul, “ Epitaxial Stabilization of Oxides in Thin Films,” Chem. Mater., 14 [10] 4026 – 43 ( 2002 ).en_US
dc.identifier.citedreferenceA. F. Moreira dos Santos, A. K. Cheetham, W. Tian, X. Q. Pan, Y. Jia, N. J. Murphy, J. Lettieri, and D. G. Schlom, “ Epitaxial Growth and Properties of Metastable BiMnO 3 Thin Films,” Appl. Phys. Lett., 84 [1] 91 – 3 ( 2004 ).en_US
dc.identifier.citedreferenceT. Heeg, M. Roeckerath, J. Schubert, W. Zander, C. Buchal, H. Y. Chen, C. L. Jia, Y. Jia, C. Adamo, and D. G. Schlom, “ Epitaxially Stabilized Growth of Orthorhombic LuScO 3 Thin Films,” Appl. Phys. Lett., 90 [19] 192901 ( 2007 ).en_US
dc.identifier.citedreferenceG. K. Hubler (ed), “ Pulsed Laser Deposition,” MRS Bull., 17 [2] 26 – 9 ( 1992 ).en_US
dc.identifier.citedreferenceJ. Cheung and J. Horwitz, “ Pulsed Laser Deposition History and Laser–Target Interactions,” MRS Bull., 17 [2] 30 – 6 ( 1992 ).en_US
dc.identifier.citedreferenceD. B. Chrisey and A. Inam, “ Pulsed Laser Deposition of High Tc Superconducting Thin Films for Electronic Device Applications,” MRS Bull., 17 [2] 37 – 43 ( 1992 ).en_US
dc.identifier.citedreferenceT. Venkatesan, X. D. Wu, R. Muenchausen, and A. Pique, “ Pulsed Laser Deposition : Future Directions,” MRS Bull., 17 [2] 54 – 8 ( 1992 ).en_US
dc.identifier.citedreferenceK. -H. Hellwege, and A. M. Hellwege (eds), Landolt-BÖrnstein: Numerical Data and Functional Relationships in Science and Technology, Part a, Vol. 16, p. 233. Springer-Verlag, Berlin, 1981.en_US
dc.identifier.citedreferenceJ. Lettieri, Y. Jia, M. Urbanik, C. I. Weber, J-P. Maria, D. G. Schlom, H. Li, R. Ramesh, R. Uecker, and P. Reiche, “ Epitaxial Growth of (001)-Oriented and (110)-Oriented SrBi 2 Ta 2 O 9 Thin Films,” Appl. Phys. Lett., 73 [20] 2923 – 5 ( 1998 ).en_US
dc.identifier.citedreferenceJ. Lettieri, M. A. Zurbuchen, Y. Jia, D. G. Schlom, S. K. Streiffer, and M. E. Hawley, “ Epitaxial Growth of SrBi 2 Nb 2 O 9 on (110) SrTiO 3 and the Establishment of a Lower Bound on the Spontaneous Polarization of SrBi 2 Nb 2 O 9,” Appl. Phys. Lett., 77 [19] 3090 – 2 ( 2000 ).en_US
dc.identifier.citedreferenceH. L. Kao, J. Kwo, R. M. Fleming, M. Hong, and J. P. Mannaerts, “ In Situ Growth and Properties of Single-Crystalline-Like La 2− x Sr x CuO 4 Epitaxial Films by Off-Axis Sputtering,” Appl. Phys. Lett., 59 [21] 2748 – 50 ( 1991 ).en_US
dc.identifier.citedreferenceO. Wada, K. Kuroda, J. Tanimura, M. Kataoka, K. Kojima, T. Takami, K. Hamanaka, and T. Ogama, “ Defence of Crystal Orientation of BiSrCaCuO Thin Films on Off-Angles of Vicinal SrTiO 3 (110) Surfaces,” Jpn. J. Appl. Phys., 30 [11A] L1881 – 3 ( 1991 ).en_US
dc.identifier.citedreferenceJ. Tanimura, K. Kuroda, M. Kataoka, O. Wada, T. Takami, K. Kojima, and T. Ogama, “ (01 n )-Oriented BiSrCaCuO Thin Films Formed on CeO 2 Buffer Layers,” Jpn. J. Appl. Phys., 32 [2B] L254 – 6 ( 1993 ).en_US
dc.identifier.citedreferenceJ. Lettieri, M. A. Zurbuchen, Y. Jia, D. G. Schlom, S. K. Streiffer, and M. E. Hawley, “ Epitaxial Growth of Non- c -Oriented SrBi 2 Nb 2 O 9 on (111) SrTiO 3,” Appl. Phys. Lett., 76 [20] 2937 – 9 ( 2000 ).en_US
dc.identifier.citedreferenceM. A. Zurbuchen, J. Lettieri, Y. Jia, D. G. Schlom, S. K. Streiffer, and M. E. Hawley, “ Transmission Electron Microscopy Study of (103)-Oriented Epitaxial SrBi 2 Nb 2 O 9 Films Grown on (111) SrTiO 3 and (111) SrRuO 3 /(111) SrTiO 3,” J. Mater. Res., 16 [2] 489 – 502 ( 2001 ).en_US
dc.identifier.citedreferenceM. Kitabatake, P. Fons, and J. E. Greene, “ Molecular Dynamics Simulations of Low-Energy Particle Bombardment Effects During Vapor-Phase Crystal Growth : 10 eV Si Atoms Incident on Si(001)2 × 1 Surfaces,” J. Vac. Sci. Technol. A, 8 [5] 3726 – 35 ( 1990 ).en_US
dc.identifier.citedreferenceM. Kitabatake and J. E. Greene, “ Molecular Dynamics and Quasidynamics Simulations of Low-Energy Particle Bombardment Effects During Vapor-Phase Crystal Growth : Production and Annihilation of Defects Due to 50 eV Si Incident on (2 × 1)-Terminated Si(001),” J. Appl. Phys., 73 [7] 3183 – 94 ( 1993 ).en_US
dc.identifier.citedreferenceE. J. Tarsa, E. A. Hachfeld, F. T. Quinlan, J. S. Speck, and M. Eddy, “ Growth-Related Stress and Surface Morphology in Homoepitaxial SrTiO 3 Films,” Appl. Phys. Lett., 68 [4] 490 – 2 ( 1996 ).en_US
dc.identifier.citedreferenceJ.-P. Maria, S. Trolier-McKinstry, D. G. Schlom, M. E. Hawley, and G. W. Brown, “ The Influence of Energetic Bombardment on the Structure and Properties of Epitaxial SrRuO 3 Thin Films Grown by Pulsed Laser Deposition,” J. Appl. Phys., 83 [8] 4373 – 9 ( 1998 ).en_US
dc.identifier.citedreferenceT. Ohnishi, M. Lippmaa, T. Yamamoto, S. Meguro, and H. Koinuma, “ Improved Stoichiometry and Misfit Control in Perovskite Thin Film Formation at a Critical Fluence by Pulsed Laser Deposition,” Appl. Phys. Lett., 87 [24] 2419191 ( 2005 ).en_US
dc.identifier.citedreferenceT. Ohnishi, K. Shibuya, T. Yamamoto, and M. Lippmaa, “ Defects and Transport in Complex Oxide Thin Films,” J. Appl. Phys., 103 [10] 103703. ( 2008 ).en_US
dc.identifier.citedreferenceH. Karl and B. Stritzker, “ Reflection High-Energy Electron Diffraction Oscillations Modulated by Laser-Pulse Deposited YBa 2 Cu 3 O 7− x,” Phys. Rev. Lett., 69 [20] 2939 – 42 ( 1992 ).en_US
dc.identifier.citedreferenceG. J. H. M. Rijnders, A. G. Koster, D. H. A. Blank, and H. Rogalla, “ In Situ Monitoring During Pulsed Laser Deposition of Complex Oxides Using Reflection High Energy Electron Diffraction Under High Oxygen Pressure,” Appl. Phys. Lett., 70 [14] 1888 – 90 ( 1997 ).en_US
dc.identifier.citedreferenceM. H. Yang and C. P. Flynn, “ Growth of Alkali Halides from Molecular Beams : Global Growth Characteristics,” Phys. Rev. Lett., 62 [21] 2476 – 9 ( 1989 ).en_US
dc.identifier.citedreferenceS. Yadavalli, M. H. Yang, and C. P. Flynn, “ Low-Temperature Growth of MgO by Molecular-Beam Epitaxy,” Phys. Rev. B, 41 [11] 7961 – 3 ( 1990 ).en_US
dc.identifier.citedreferenceA. Y. Cho and J. R. Arthur, “ Molecular Beam Epitaxy,” Progress in Solid-State Chemistry, 10 [3] 157 – 91 ( 1975 ).en_US
dc.identifier.citedreferenceR. F. C. Farrow (ed), Molecular Beam Epitaxy: Applications to Key Materials. Noyes, Park Ridge, 1995.en_US
dc.identifier.citedreferenceM. A. Herman and H. Sitter, Molecular Beam Epitaxy: Fundamentals and Current Status, 2nd edition, Springer-Verlag, Berlin, 1996.en_US
dc.identifier.citedreferenceS. Yoshida, “ Reactive Molecular Beam Epitaxy ”; pp. 287 – 316 in Critical Reviews ™ in Solid State and Materials Sciences, Vol. 11, Edited by D. E. Schuele, and R. W. Hoffman. CRC Press, Boca Raton, FL, 1984.en_US
dc.identifier.citedreferenceK. Iijima, T. Terashima, K. Yamamoto, K. Hirata, and Y. Bando, “ Preparation of Ferroelectric BaTiO 3 Thin Films by Activated Reactive Evaporation,” Appl. Phys. Lett., 56 [6] 527 – 9 ( 1990 ).en_US
dc.identifier.citedreferenceT. Sakamoto, H. Funabashi, K. Ohta, T. Nakagawa, N. J. Kawai, T. Kojima, and Y. Bando, “ Well Defined Superlattice Structures Made by Phase-Locked Epitaxy Using RHEED Intensity Oscillations,” Superlattices Microstruct., 1 [4] 347 – 52 ( 1985 ).en_US
dc.identifier.citedreferenceA. C. Gossard, P. M. Petroff, W. Weigmann, R. Dingle, and A. Savage, “ Epitaxial Structures with Alternate-Atomic-Layer Composition Modulation,” Appl. Phys. Lett., 29 [6] 323 – 5 ( 1976 ).en_US
dc.identifier.citedreferenceA. Y. Cho, “ Molecular Beam Epitaxy from Research to Manufacturing,” MRS Bull., 20 [4] 21 – 8 ( 1995 ).en_US
dc.identifier.citedreferenceR. A. Betts and C. W. Pitt, “ Growth of Thin-Film Lithium Niobate by Molecular Beam Epitaxy,” Electron. Lett., 21 [21] 960 – 2 ( 1985 ).en_US
dc.identifier.citedreferenceM. Petrucci, C. W. Pitt, and P. J. Dobson, “ RHEED Studies on z -Cut LiNbO 3,” Electron. Lett., 22 [18] 954 – 6 ( 1986 ).en_US
dc.identifier.citedreferenceZ. Sitar, F. Gitmans, W. Liu, and P. Gunter, “ Homo and Heteroepitaxial Growth of LiTaO 3 and LiNbO 3 by MBE ”; pp. 255 – 60 in Epitaxial Oxide Thin Films II, Vol. 401, Edited by J. S. Speck, D. K. Fork, R. M. Wolf, and T. Shiosaki. Materials Research Society, Pittsburgh, 1996.en_US
dc.identifier.citedreferenceW. A. Doolittle, A. G. Carver, and W. Henderson, “ Molecular Beam Epitaxy of Complex Metal-Oxides : Where Have We Come, Where Are We Going, and How Are We Going to Get There,” J. Vac. Sci. Technol. B, 23 [3] 1272 – 6 ( 2005 ).en_US
dc.identifier.citedreferenceR. A. McKee, F. J. Walker, J. R. Conner, E. D. Specht, and D. E. Zelmon, “ Molecular Beam Epitaxy Growth of Epitaxial Barium Silicide, Barium Oxide, and Barium Titanate on Silicon,” Appl. Phys. Lett., 59 [7] 782 – 4 ( 1991 ).en_US
dc.identifier.citedreferenceR. A. McKee, F. J. Walker, E. D. Specht, G. E. Jellison Jr., and L. A. Boatner, “ Interface Stability and the Growth of Optical Quality Perovskites on MgO,” Phys. Rev. Lett., 72 [17] 2741 – 4 ( 1994 ).en_US
dc.identifier.citedreferenceR. A. McKee, F. J. Walker, and M. F. Chisholm, “ Physical Structure and Inversion Charge at a Semiconductor Interface with a Crystalline Oxide,” Science, 293 [5529] 468 – 71 ( 2001 ).en_US
dc.identifier.citedreferenceT. Tsurumi, T. Suzuki, M. Yamane, and M. Daimon, “ Fabrication of Barium Titanate/Strontium Titanate Artificial Superlattice by Atomic Layer Epitaxy,” Jpn. J. Appl. Phys., Part 1, 33 [9B] 5192 – 5 ( 1994 ).en_US
dc.identifier.citedreferenceH. Shigetani, K. Kobayashi, M. Fujimoto, W. Sugimura, Y. Matsui, and J. Tanaka, “ BaTiO 3 Thin Films Grown on SrTiO 3 Substrates by a Molecular-Beam-Epitaxy Method Using Oxygen Radicals,” J. Appl. Phys., 81 [2] 693 – 7 ( 1997 ).en_US
dc.identifier.citedreferenceH. P. Sun, W. Tian, X. Q. Pan, J. H. Haeni, and D. G. Schlom, “ Evolution of Dislocation Arrays in Epitaxial BaTiO 3 Thin Films Grown on (100) SrTiO 3,” Appl. Phys. Lett., 84 [17] 3298 – 300 ( 2004 ).en_US
dc.identifier.citedreferenceH. P. Sun, X. Q. Pan, J. H. Haeni, and D. G. Schlom, “ Structural Evolution of Dislocation Half-Loops in Epitaxial BaTiO 3 Thin Films During High-Temperature Annealing,” Appl. Phys. Lett., 85 [11] 1967 – 9 ( 2004 ).en_US
dc.identifier.citedreferenceK. J. Choi, M. D. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, and C. B. Eom, “ Enhancement of Ferroelectricity in Strained BaTiO 3 Thin Films,” Science, 306 [5698] 1005 – 9 ( 2004 ).en_US
dc.identifier.citedreferenceF. J. Walker and R. A. McKee, “ High-k Crystalline Gate Dielectrics : A Research Perspective ”; pp. 607 – 37 in High Dielectric Constant Materials: VLSI MOSFET Applications, Edited by H. R. Huff, and D. C. Gilmer. Springer, Berlin, 2005.en_US
dc.identifier.citedreferenceV. Vaithyanathan, J. Lettieri, W. Tian, A. Kochhar, H. Ma, A. Sharan, A. Vasudevarao, V. Gopalan, Y. Li, L. Q. Chen, P. Zschack, J. C. Woicik, J. Levy, and D. G. Schlom, “ c -Axis Oriented Epitaxial BaTiO 3 Films on (001) Si,” J. Appl. Phys., 100 [2] 024108 ( 2006 ).en_US
dc.identifier.citedreferenceC. D. Theis and D. G. Schlom, “ Epitaxial Lead Titanate Grown by MBE,” J. Cryst. Growth, 174 [1–4] 473 – 9 ( 1997 ).en_US
dc.identifier.citedreferenceC. D. Theis, J. Yeh, D. G. Schlom, M. E. Hawley, G. W. Brown, J. C. Jiang, and X. Q. Pan, “ Adsorption-Controlled Growth of Bi 4 Ti 3 O 12 by Reactive MBE,” Appl. Phys. Lett., 72 [22] 2817 – 9 ( 1998 ).en_US
dc.identifier.citedreferenceS. Migita, H. Ota, H. Fujino, Y. Kasai, and S. Sakai, “ Epitaxial Bi 4 Ti 3 O 12 Thin Film Growth using Bi Self-Limiting Function,” J. Cryst. Growth, 200 [1–2] 161 – 8 ( 1999 ).en_US
dc.identifier.citedreferenceI. Bozovic, J. N. Eckstein, and G. F. Virshup, “ Superconducting Oxide Multilayers and Superlattices : Physics, Chemistry, and Nanoengineering,” Physica C, 235–240 [1] 178 – 81 ( 1994 ).en_US
dc.identifier.citedreferenceR. A. McKee, F. J. Walker, and M. F. Chisholm, “ Crystalline Oxides on Silicon : The First Five Monolayers,” Phys. Rev. Lett., 81 [14] 3014 – 7 ( 1998 ).en_US
dc.identifier.citedreferenceJ. H. Haeni, C. D. Theis, and D. G. Schlom, “ RHEED Intensity Oscillations for the Stoichiometric Growth of SrTiO 3 Thin Films by Reactive Molecular Beam Epitaxy,” J. Electroceram., 4 [2/3] 385 – 91 ( 2000 ).en_US
dc.identifier.citedreferenceK. Eisenbeiser, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw, and C. D. Overgaard, “ Field Effect Transistors with SrTiO 3 Gate Dielectric on Si,” Appl. Phys. Lett., 76 [10] 1324 – 6 ( 2000 ).en_US
dc.identifier.citedreferenceZ. Yu, J. Ramdani, J. A. Curless, C. D. Overgaard, J. M. Finder, R. Droopad, K. W. Eisenbeiser, J. A. Hallmark, W. J. Ooms, and V. S. Kaushik, “ Epitaxial Oxide Thin Films on Si(001),” J. Vac. Sci. Technol. B, 18 [4] 2139 – 45 ( 2000 ).en_US
dc.identifier.citedreferenceJ. Lettieri, “ Critical Issues of Complex, Epitaxial Oxide Growth and Integration with Silicon by Molecular Beam Epitaxy ”; Ph.D. Thesis, Pennsylvania State University, 2002. Available on-line at http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-202/index.htmlen_US
dc.identifier.citedreferenceH. Li, X. Hu, Y. Wei, Z. Yu, X. Zhang, R. Droopad, A. A. Demkov, J. Edwards Jr., K. Moore, W. Ooms, J. Kulik, and P. Fejes, “ Two-Dimensional Growth of High-Quality Strontium Titanate Thin Films on Si,” J. Appl. Phys., 93 [8] 4521 – 5 ( 2003 ).en_US
dc.identifier.citedreferenceM. D. Biegalski, Y. Jia, D. G. Schlom, S. Trolier-McKinstry, S. K. Streiffer, V. Sherman, R. Uecker, and P. Reiche, “ Relaxor Ferroelectricity in Strained Epitaxial SrTiO 3 Thin Films on DyScO 3 Substrates,” Appl. Phys. Lett., 88 [19] 192907 ( 2006 ).en_US
dc.identifier.citedreferenceL. Fitting Kourkoutis, C. S. Hellberg, V. Vaithyanathan, H. Li, M. K. Parker, K. E. Andersen, D. G. Schlom, and D. A. Muller, “ Imaging the Phase Separation in Atomically Thin Buried SrTiO 3 Layers by Electron Channeling,” Phys. Rev. Lett., 100 [3] 036101 ( 2008 ).en_US
dc.identifier.citedreferenceM. D. Biegalski, S. Trolier-McKinstry, D. G. Schlom, D. D. Fong, J. A. Eastman, P. H. Fuoss, S. K. Streiffer, T. Heeg, J. Schubert, W. Tian, X. Q. Pan, M. E. Hawley, M. Bernhagen, P. Reiche, and R. Uecker, “ Critical Thickness of High Structural Quality SrTiO 3 Films Grown on Orthorhombic (101) DyScO 3,” J. Appl. Phys., in press.en_US
dc.identifier.citedreferenceJ. N. Eckstein, I. Bozovic, M. Rzchowski, J. O'Donnell, B. Hinaus, and M. Onellion, “ Molecular Beam Epitaxy of Single Crystal Colossal Magneto-Resistive Material ”; pp. 467 – 71 in Epitaxial Oxide Thin Films II, Vol. 401, Edited by J. S. Speck, D. K. Fork, R. M. Wolf, and T. Shiosaki. Materials Research Society, Pittsburgh, 1996.en_US
dc.identifier.citedreferenceJ. N. Eckstein, I. Bozovic, J. O'Donnell, M. Onellion, and M. S. Rzchowski, “ Anisotropic Magnetoresistance in Tetragonal La 1– x Ca x MnO Δ Thin Films,” Appl. Phys. Lett., 69 [9] 1312 – 4 ( 1995 ).en_US
dc.identifier.citedreferenceL. Maritato and A. Y. Petrov, “ High Metal–Insulator Transition Temperature in La 1− x Sr x MnO 3 Thin Films Grown in Low Oxygen Partial Pressure by Molecular Beam Epitaxy,” J. Magn. Magn. Mater., 272–276 [2] 1135 – 6 ( 2004 ).en_US
dc.identifier.citedreferenceG. M. Roesler Jr., M. E. Filipkowski, P. R. Broussard, Y. U. Idzerda, M. S. Osofsky, and R. J. Soulen Jr., “ Epitaxial Multilayers of Ferromagnetic Insulators with Nonmagnetic Metals and Superconductors ”; pp. 285 – 90 in Superconducting Superlattices and Multilayers, Vol. 2157, Edited by I. Bozovic. SPIE, Bellingham, 1994.en_US
dc.identifier.citedreferenceN. Iwata, G. Pindoria, T. Morishita, and K. Kohn, “ Preparation and Magnetic Properties of EuO Thin Films Epitaxially Grown on MgO and SrTiO 3 Substrates,” J. Phys. Soc. Jpn., 69 [1] 230 – 6 ( 2000 ).en_US
dc.identifier.citedreferenceP. G. Steeneken, “ New Light on EuO Thin Films ”; Ph.D. thesis, University of Groningen, 2002.en_US
dc.identifier.citedreferenceJ. Lettieri, V. Vaithyanathan, S. K. Eah, J. Stephens, V. Sih, D. D. Awschalom, J. Levy, and D. G. Schlom, “ Epitaxial Growth and Magnetic Properties of EuO on (001) Si by Molecular-Beam Epitaxy,” Appl. Phys. Lett., 83 [5] 975 – 7 ( 2003 ).en_US
dc.identifier.citedreferenceA. Schmehl, V. Vaithyanathan, A. Herrnberger, S. Thiel, C. Richter, M. Liberati, T. Heeg, M. RÖckerath, L. Fitting Kourkoutis, S. MÜhlbaur, P. BÖni, D. A. Muller, Y. Barash, J. Schubert, Y. Idzerda, J. Mannhart, and D. G. Schlom, “ Epitaxial Integration of the Highly Spin-Polarized Ferromagnetic Semiconductor EuO with Silicon and GaN,” Nat. Mater., 6 [11] 882 – 7 ( 2007 ).en_US
dc.identifier.citedreferenceR. W. Ulbricht, T. Heeg, D. G. Schlom, A. Schmehl, and J. Schubert, “ Adsorption-Controlled Growth of EuO by Molecular-Beam Epitaxy,” Appl. Phys. Lett, submitted.en_US
dc.identifier.citedreferenceS. A. Chambers, “ Epitaxial Growth and Properties of Thin Film Oxides,” Surf. Sci. Rep., 39 [5–6] 105 – 80 ( 2000 ).en_US
dc.identifier.citedreferenceJ. Kabelac, S. Ghosh, P. Dobal, and R. Katiyar, “ rf Oxygen Plasma Assisted Molecular Beam Epitaxy Growth of BiFeO 3 Thin Films on SrTiO 3 (001),” J. Vac. Sci. Technol. B, 25 [3] 1049 – 52 ( 2007 ).en_US
dc.identifier.citedreferenceJ. F. Ihlefeld, A. Kumar, V. Gopalan, D. G. Schlom, Y. B. Chen, X. Q. Pan, T. Heeg, J. Schubert, X. Ke, P. Schiffer, J. Orenstein, L. W. Martin, Y. H. Chu, and R. Ramesh, “ Adsorption-Controlled Molecular-Beam Epitaxial Growth of BiFeO 3,” Appl. Phys. Lett., 91 [7] 071922 ( 2007 ).en_US
dc.identifier.citedreferenceJ. F. Ihlefeld, N. J. Podraza, Z. K. Liu, R. C. Rai, X. Xu, T. Heeg, Y. B. Chen, J. Li, R. W. Collins, J. L. Musfeldt, X. Q. Pan, J. Schubert, R. Ramesh, and D. G. Schlom, “ Optical Band Gap of BiFeO 3 Grown by Molecular-Beam Epitaxy,” Appl. Phys. Lett., 92 [14] 142908 ( 2008 ).en_US
dc.identifier.citedreferenceS. Imada, S. Shouriki, E. Tokumitsu, and H. Ishiwara, “ Epitaxial Growth of Ferroelectric YMnO 3 Thin Films on Si(111) Substrates by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys., Part 1, 37 [12A] 6497 – 501 ( 1998 ).en_US
dc.identifier.citedreferenceY. Chye, T. Liu, D. Li, K. Lee, D. Lederman, and T. H. Myers, “ Molecular Beam Epitaxy of YMnO 3 on c -Plane GaN,” Appl. Phys. Lett., 88 [13] 132903 ( 2006 ).en_US
dc.identifier.citedreferenceJ. C. Jiang, X. Q. Pan, W. Tian, C. D. Theis, and D. G. Schlom, “ Abrupt PbTiO 3 /SrTiO 3 Superlattices Grown by Reactive Molecular Beam Epitaxy,” Appl. Phys. Lett., 74 [19] 2851 – 3 ( 1999 ).en_US
dc.identifier.citedreferenceW. Tian, J. C. Jiang, X. Q. Pan, J. H. Haeni, Y. L. Li, L. Q. Chen, D. G. Schlom, J. B. Neaton, K. M. Rabe, and Q. X. Jia, “ Structural Evidence for Enhanced Polarization in a Commensurate Short-Period BaTiO 3 /SrTiO 3 Superlattice,” Appl. Phys. Lett., 89 [9] 092905 ( 2006 ).en_US
dc.identifier.citedreferenceA. Soukiassian, W. Tian, D. A. Tenne, X. X. Xi, D. G. Schlom, N. D. Lanzillotti-Kimura, A. Bruchhausen, A. Fainstein, H. P. Sun, X. Q. Pan, A. Cros, and A. Cantarero, “ Acoustic Bragg Mirrors and Cavities Made Using Piezoelectric Oxides,” Appl. Phys. Lett., 90 [4] 042909 ( 2007 ).en_US
dc.identifier.citedreferenceA. Soukiassian, W. Tian, V. Vaithyanathan, J. H. Haeni, L. Q. Chen, X. X. Xi, D. G. Schlom, D. A. Tenne, H. P. Sun, X. Q. Pan, K. J. Choi, C. B. Eom, Y. L. Li, Q. X. Jia, C. Constantin, R. M. Feenstra, M. Bernhagen, P. Reiche, and R. Uecker, “ Growth of Nanoscale BaTiO 3 /SrTiO 3 Superlattices by Molecular-Beam Epitaxy,” J. Mater. Res., 23 [5] 1417 – 32 ( 2008 ).en_US
dc.identifier.citedreferenceR. H. Lamoreaux and D. L. Hildenbrand, “ High Temperature Vaporization Behavior of Oxides I. Alkali Metal Binary Oxides,” J. Phys. Chem. Ref. Data, 13 [1] 151 – 73 ( 1984 ).en_US
dc.identifier.citedreferenceR. H. Lamoreaux and D. L. Hildenbrand, “ High-Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg,” J. Phys. Chem. Ref. Data, 16 [3] 419 – 43 ( 1987 ).en_US
dc.identifier.citedreferenceM. E. Klausmeier-Brown, J. N. Eckstein, I. Bozovic, and G. F. Virshup, “ Accurate Measurement of Atomic Beam Flux by Pseudo-Double-Beam Atomic Absorption Spectroscopy for Growth of Thin-Film Oxide Superconductors,” Appl. Phys. Lett., 60 [5] 657 – 9 ( 1992 ).en_US
dc.identifier.citedreferenceB. J. Gibbons, M. E. Hawley, S. Trolier-McKinstry, and D. G. Schlom, “ Real-Time Spectroscopic Ellipsometry as a Characterization Tool for Oxide Molecular Beam Epitaxy,” J. Vac. Sci. Technol. A, 19 [2] 584 – 90 ( 2001 ).en_US
dc.identifier.citedreference242 BandiT, k-Space Associates, Ann Arbor, MI.en_US
dc.identifier.citedreferenceE. S. Hellman and J. S. Harris, “ Infrared Transmission Spectroscopy of GaAs during Molecular Beam Epitaxy,” J. Cryst. Growth, 81 [1–4] 38 – 42 ( 1987 ).en_US
dc.identifier.citedreference244 MOSS, k-Space Associates, Ann Arbor, MI.en_US
dc.identifier.citedreferenceC. Taylor, D. Barlett, E. Chason, and J. Floro, “ Technology,” Ind. Phys., 4 [1] 25 ( 1998 ).en_US
dc.identifier.citedreferenceI. Bozovic and V. Matijasevic, “ COMBE : A Powerful New Tool for Materials Science,” Mater. Sci. Forum, 352, 1 – 8 ( 2000 ).en_US
dc.identifier.citedreferenceS. Y. Wu, W. J. Takei, M. H. Francombe, and S. E. Cummins, “ Domain Structure and Polarization Reversal in Films of Ferroelectric Bismuth Titanate,” Ferroelectrics, 3 [234] 217 – 24 ( 1972 ).en_US
dc.identifier.citedreferenceW. J. Takei, S. Y. Wu, and M. H. Francombe, “ Optimization of Epitaxial Quality in Sputtered Films of Ferroelectric Bismuth Titanate,” J. Cryst. Growth, 28 [2] 188 – 98 ( 1975 ).en_US
dc.identifier.citedreferenceJ. Fujita, T. Yoshitake, A. Kamijo, T. Satoh, and H. Igarashi, “ Preferentially Oriented Epitaxial Y–Ba–Cu–O Films Prepared by the Ion Beam Sputtering Method,” J. Appl. Phys., 64 [3] 1292 – 5 ( 1988 ).en_US
dc.identifier.citedreferenceC. B. Eom, A. F. Marshall, S. S. Laderman, R. D. Jacowitz, and T. H. Geballe, “ Epitaxial and Smooth Films of a -Axis YBa 2 Cu 3 O 7,” Science, 249 [4976] 1549 – 52 ( 1990 ).en_US
dc.identifier.citedreferenceG. Asayama, J. Lettieri, M. A. Zurbuchen, Y. Jia, S. Trolier-McKinstry, D. G. Schlom, S. K. Streiffer, J-P. Maria, S. D. Bu, and C. B. Eom, “ Growth of (103) Fiber-Textured SrBi 2 Nb 2 O 9 Films on Pt-Coated Silicon,” Appl. Phys. Lett., 80 [13] 2371 – 3 ( 2002 ).en_US
dc.identifier.citedreferenceR. Ramesh and D. G. Schlom, “ Orienting Ferroelectric Films,” Science, 296 [5575] 1975 – 6 ( 2002 ).en_US
dc.identifier.citedreferenceH. N. Lee, D. Hesse, N. Zakharov, and U. Gosele, “ Ferroelectric Bi 3.25 La 0.75 Ti 3 O 12 Films of Uniform a -Axis Orientation on Silicon Substrates,” Science, 296 [5575] 2006 – 9 ( 2002 ).en_US
dc.identifier.citedreferenceY. Iijima, N. Tanabe, O. Kohno, and Y. Ikeno, “ Inplane Aligned YBa 2 Cu 3 O 7− x Thin-Films Deposited on Polycrystalline Metallic Substrates,” Appl. Phys. Lett., 60 [6] 769 – 71 ( 1992 ).en_US
dc.identifier.citedreferenceC. P. Wang, K. B. Do, M. R. Beasley, T. H. Geballe, and R. H. Hammond, “ Deposition of In-Plane Textured MgO on Amorphous Si 3 N 4 Substrates by Ion-Beam-Assisted Deposition and Comparisons with Ion-Beam-Assisted Deposited Yttria-Stabilized-Zirconia,” Appl. Phys. Lett., 71 [20] 2955 – 7 ( 1997 ).en_US
dc.identifier.citedreferenceA. Goyal, D. P. Norton, J. D. Budai, M. Paranthaman, E. D. Specht, D. M. Kroeger, D. K. Christen, Q. He, B. Saffian, F. A. List, D. F. Lee, P. M. Martin, C. E. Klabunde, E. Hartfield, and V. K. Sikka, “ High Critical Current Density Superconducting Tapes by Epitaxial Deposition of YBa 2 Cu 3 O x Thick Films on Biaxially Textured Metals,” Appl. Phys. Lett., 69 [12] 1795 – 7 ( 1996 ).en_US
dc.identifier.citedreferenceD. P. Norton, A. Goyal, J. D. Budai, D. K. Christen, D. M. Kroeger, E. D. Specht, Q. He, B. Saffian, M. Paranthaman, C. E. Klabunde, D. F. Lee, B. C. Sales, and F. A. List, “ Epitaxial YBa 2 Cu 3 O 7 on Biaxially Textured Nickel (001) : An Approach to Superconducting Tapes with High Critical Current Density,” Science, 274 [5288] 755 – 7 ( 1996 ).en_US
dc.identifier.citedreferenceA. P. Malozemoff, J. Mannhart, and D. Scalapino, “ High-Temperature Cuprate Superconductors get to Work,” Phys. Today, 58 [4] 41 – 6 ( 2005 ).en_US
dc.identifier.citedreferenceJ. Rodriguez, K. Remack, K. Boku, K. R. Udayakumar, S. Aggarwal, S. Summerfelt, T. Moise, H. McAdams, J. McPherson, R. Bailey, M. Depner, and G. Fox, “ Reliability Properties of Low Voltage PZT Ferroelectric Capacitors and Arrays ”; pp. 200 – 8 in 2004 IEEE International Reliability Physics Symposium, Proceedings 42nd Annual IEEE, Piscataway, NJ, 2004.en_US
dc.identifier.citedreferenceR. L. Sandstrom, E. A. Giess, W. J. Gallagher, A. SegmÜller, E. I. Cooper, M. F. Chisholm, A. Gupta, S. Shinde, and R. B. Laibowitz, “ Lanthanum Gallate Substrates for Epitaxial High-Temperature Superconducting Thin Films,” Appl. Phys. Lett., 53 [19] 1874 – 6 ( 1988 ).en_US
dc.identifier.citedreferenceR. W. Simon, C. E. Platt, A. E. Lee, G. S. Lee, K. P. Daly, M. S. Wire, J. A. Luine, and M. Urbanik, “ Low-Loss Substrate for Epitaxial Growth of High-Temperature Superconductor Thin Films,” Appl. Phys. Lett., 53 [26] 2677 – 9 ( 1988 ).en_US
dc.identifier.citedreferenceG. Koren, A. Gupta, E. A. Giess, A. SegmÜller, and R. B. Laibowitz, “ Epitaxial Films of YBa 2 Cu 3 O 7−Δ on NdGaO 3, LaGaO 3, and SrTiO 3 Substrates Deposited by Laser Ablation,” Appl. Phys. Lett., 54 [11] 1054 – 6 ( 1989 ).en_US
dc.identifier.citedreferenceR. Feenstra, L. A. Boatner, J. D. Budai, D. K. Christen, M. D. Galloway, and D. B. Poker, “ Epitaxial Superconducting Thin Films of YBa 2 Cu 3 O 7− x on KTaO 3 Single Crystals,” Appl. Phys. Lett., 54 [11] 1063 – 5 ( 1989 ).en_US
dc.identifier.citedreferenceE. A. Giess, R. L. Sandstrom, W. J. Gallagher, A. Gupta, S. L. Shinde, R. F. Cook, E. I. Cooper, E. J. M. O'Sullivan, J. M. Roldan, A. P. SegmÜller, and J. Angilello, “ Lanthanide Gallate Perovskite-Type Substrates for Epitaxial, High- T c Superconducting Ba 2 YCu 3 O 7−Δ Films,” IBM J. Res. Dev., 34 [6] 916 – 26 ( 1990 ).en_US
dc.identifier.citedreferenceH. Asano, S. Kubo, O. Michikami, M. Satoh, and T. Konaka, “ Epitaxial Growth of EuBa 2 Cu 3 O 7− y Films on YAlO 3 Single Crystals,” Jpn. J. Appl. Phys., Part 2, 29 [8] L1452 – 4 ( 1990 ).en_US
dc.identifier.citedreferenceG. W. Berkstresser, A. J. Valentino, and C. D. Brandle, “ Growth of Single Crystals of Rare Earth Gallates,” J. Cryst. Growth, 109 [1–4] 457 – 66 ( 1991 ).en_US
dc.identifier.citedreferenceG. W. Berkstresser, A. J. Valentino, and C. D. Brandle, “ Growth of Single Crystals of Lanthanum Aluminate,” J. Cryst. Growth, 109 [1–4] 467 – 71 ( 1991 ).en_US
dc.identifier.citedreferenceR. W. Ralston, M. A. Kastner, W. J. Gallagher, and B. Batlogg, “ Cooperating on Superconductivity,” IEEE Spectrum, 29 [8] 50 – 5 ( 1992 ).en_US
dc.identifier.citedreferenceG. W. Berkstresser, A. J. Valentino, and C. D. Brandle, “ Congruent Composition for Growth of Lanthanum Aluminate,” J. Cryst. Growth, 128 [1–4] 684 – 8 ( 1993 ).en_US
dc.identifier.citedreferenceR. Brown, V. Pendrick, D. Kalokitis, and B. H. T. Chai, “ Low-Loss Substrate for Microwave Application of High-Temperature Superconductor Films,” Appl. Phys. Lett., 57 [13] 1351 – 3 ( 1990 ).en_US
dc.identifier.citedreferenceS. Hontsu, J. Ishii, T. Kawai, and S. Kawai, “ LaSrGaO 4 Substrate Gives Oriented Crystalline YBa 2 Cu 3 O 7− y Films,” Appl. Phys. Lett., 59 [22] 2886 – 8 ( 1991 ).en_US
dc.identifier.citedreferenceD. Mateika, H. Kohler, H. Laudan, and E. Volkel, “ Mixed-Perovskite Substrates for High- T c Superconductors,” J. Cryst. Growth, 109 [1–4] 447 – 56 ( 1991 ).en_US
dc.identifier.citedreferenceJ. M. Phillips, “ Substrate Selection for High-Temperature Superconducting Thin Films,” J. Appl. Phys., 79 [4] 1829 – 48 ( 1996 ).en_US
dc.identifier.citedreferenceB. C. Chakoumakos, D. G. Schlom, M. Urbanik, and J. Luine, “ Thermal Expansion of LaAlO 3 and (La,Sr)(Al,Ta)O 3, Substrate Materials for Superconducting Thin-Film Device Applications,” J. Appl. Phys., 83 [4] 1979 – 82 ( 1998 ).en_US
dc.identifier.citedreferenceL. Merker, “ Method of Prepration of Monocrystalline Strontium Titanate Composition of High Refractive Index ”; US Patent No. 2,684,910, July 27, 1954.en_US
dc.identifier.citedreferenceJ. G. Bednorz and H. J. Scheel, “ Flame-Fusion Growth of SrTiO 3,” J. Cryst. Growth, 41 [1] 5 – 12 ( 1977 ).en_US
dc.identifier.citedreferenceP. I. Nabokin, D. Souptel, and A. M. Balbashov, “ Floating Zone Growth of High-Quality SrTiO 3 Single Crystals,” J. Cryst. Growth, 250 [3–4] 397 – 404 ( 2003 ).en_US
dc.identifier.citedreferenceH. J. Scheel, J. G. Bednorz, and P. Dill, “ Crystal Growth of Strontium Titanate SrTiO 3,” Ferroelectrics, 13 [1–4] 507 – 9 ( 1976 ).en_US
dc.identifier.citedreferenceN. A. Spaldin and M. Fiebig, “ The Renaissance of Manetoelectric Multiferroics,” Science, 309 [5733] 391 – 2 ( 2005 ).en_US
dc.identifier.citedreferenceJ. Schubert, O. Trithaveesak, A. Petraru, C. L. Jia, R. Uecker, P. Reiche, and D. G. Schlom, “ Structural and Optical Properties of Epitaxial BaTiO 3 Thin Films Grown on GdScO 3 (110),” Appl. Phys. Lett., 82 [20] 3460 – 2 ( 2003 ).en_US
dc.identifier.citedreferenceM. D. Biegalski, J. H. Haeni, S. Trolier-McKinstry, D. G. Schlom, C. D. Brandle, and A. J. Ven Graitis, “ Thermal Expansion of the New Perovskite Substrates DyScO 3 and GdScO 3,” J. Mater. Res., 20 [4] 952 – 8 ( 2005 ).en_US
dc.identifier.citedreferenceR. Uecker, H. Wilke, D. G. Schlom, B. Velickov, P. Reiche, A. Polity, M. Bernhagen, and M. Rossberg, “ Spiral Formation during Czochralski Growth of Rare-Earth Scandates,” J. Cryst. Growth, 295 [1] 84 – 91 ( 2006 ).en_US
dc.identifier.citedreferenceB. Veličkov, V. Kahlenberg, R. Bertram, and M. Bernhagen, “ Crystal Chemistry of GdScO 3, DyScO 3, SmScO 3, and NdScO 3,” Z. Kristallogr., 222 [9] 466 – 73 ( 2007 ).en_US
dc.identifier.citedreferenceR. Uecker, B. Velickov, D. Klimm, R. Bertram, M. Bernhagen, M. Rabe, M. Albrecht, R. Fornari, and D. G. Schlom, “ Properties of Rare-Earth Scandate Single Crystals (Re=Nd–Dy),” J. Cryst. Growth, 310 [10] 2649 – 58 ( 2008 ).en_US
dc.identifier.citedreferenceM. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, and H. Koinuma, “ Atomic Control of the SrTiO 3 Crystal Surface,” Science, 266 [5190] 1540 – 2 ( 1994 ).en_US
dc.identifier.citedreferenceG. Koster, B. L. Kropman, G. J. H. M. Rijnders, D. H. A. Blank, and H. Rogalla, “ Quasi-Ideal Strontium Titanate Crystal Surfaces Through Formation of Strontium Hydroxide,” Appl. Phys. Lett., 73 [20] 2920 – 2 ( 1998 ).en_US
dc.identifier.citedreferenceA. G. Schrott, J. A. Misewich, M. Copel, D. W. Abraham, and Y. Zhang, “ A -Site Surface Termination in Strontium Titanate Single Crystals,” Appl. Phys. Lett., 79 [12] 1786 – 8 ( 2001 ).en_US
dc.identifier.citedreference288. D. H. A. Blank (private communication).en_US
dc.identifier.citedreferenceT. Ohnishi, K. Takahashi, M. Nakamura, M. Kawasaki, M. Yoshimoto, and H. Koinuma, “ A -Site Layer Terminated Perovskite Substrate : NdGaO 3,” Appl. Phys. Lett., 74 [17] 2531 – 3 ( 1999 ).en_US
dc.identifier.citedreferenceH-J. Bae, J. Sigman, D. P. Norton, and L. A. Boatner, “ Surface Treatment for Forming Unit-Cell Steps on the (001) KTaO 3 Substrate Surface,” Appl. Surf. Sci., 241 [3–4] 271 – 8 ( 2005 ).en_US
dc.identifier.citedreferenceD. G. Schlom, L. Q. Chen, C. B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone, “ Strain Tuning of Ferroelectric Thin Films,” Annu. Rev. Mater. Res., 37, 589 – 626 ( 2007 ).en_US
dc.identifier.citedreferenceS. B. Qadri, J. S. Horwitz, D. B. Chrisey, R. C. Y. Auyeung, and K. S. Grabowski, “ X-Ray Characterization of Extremely High Quality (Sr,Ba)TiO 3 Films Grown by Pulsed Laser Deposition,” Appl. Phys. Lett., 66 [13] 1605 – 7 ( 1995 ).en_US
dc.identifier.citedreferenceJ. F. Ihlefeld and D. G. Schlom (unpublished).en_US
dc.identifier.citedreferenceJ. H. Lee and D. G. Schlom (unpublished).en_US
dc.identifier.citedreferenceC. Adamo, M. Warusawithana, D. G. Schlom, X. Ke, P. Schiffer, and L. Maritato (unpublished).en_US
dc.identifier.citedreferenceT. Yamaguti, “ Oxidation of a Crystal Surface Studied by Means of Cathode Ray Reflection,” Proc. Phys. Math. Soc. Jpn., 17 [11] 443 – 53 ( 1935 ).en_US
dc.identifier.citedreferenceR. Sato, “ Surface Oxidation of Zincblende Cleavage Face in the Roasting Atmosphere,” J. Phys. Soc. Jpn., 6, 527 – 8 ( 1951 ).en_US
dc.identifier.citedreferenceS. Matsubara, N. Shohata, and M. Mikami, “ Epitaxial Growth of PbTiO 3 on MgAl 2 O 4 /Si Substrates,” Jpn. J. Appl. Phys., 24 [Suppl. 24-3] 10 – 2 ( 1985 ).en_US
dc.identifier.citedreferenceS. Miura, T. Yoshitake, S. Matsubara, Y. Miyasaka, N. Shohata, and T. Satoh, “ Epitaxial Y–Ba–Cu–O Films on Si with Intermediate Layer by RF Magnetron Sputtering,” Appl. Phys. Lett., 53 [20] 1967 – 9 ( 1988 ).en_US
dc.identifier.citedreferenceH. Myoren, Y. Nishiyama, H. Fukumoto, H. Nasu, and Y. Osaka, “ As-Grown Preparation of Superconducting Epitaxial Ba 2 YCu 3 O x Thin Films Sputtered on Epitaxially Grown ZrO 2 /Si(100),” Jpn. J. Appl. Phys., Part 1, 28 [3] 351 – 5 ( 1989 ).en_US
dc.identifier.citedreferenceD. K. Fork, F. A. Ponce, J. C. Tramontana, and T. H. Geballe, “ Epitaxial MgO on Si(001) for Y–Ba–Cu–O Thin-Film Growth by Pulsed Laser Deposition,” Appl. Phys. Lett., 58 [20] 2294 – 6 ( 1991 ).en_US
dc.identifier.citedreferenceH. Mori and H. Ishiwara, “ Epitaxial Growth of SrTiO 3 Films on Si(100) Substrates Using a Focused Electron Beam Evaporation Method,” Jpn. J. Appl. Phys., Part 2, 30 [8A] L1415 – 7 ( 1991 ).en_US
dc.identifier.citedreferenceA. N. Tiwari, S. Blunier, H. Zogg, P. Lerch, F. Marcenat, and P. Martinoli, “ Epitaxial Growth of Superconducting YBa 2 Cu 3 O 7− x on Si(100) with CaF 2 as Intermediate Buffer,” J. Appl. Phys., 71 [10] 5095 – 8 ( 1992 ).en_US
dc.identifier.citedreferenceD. K. Fork, “ Epitaxial Oxides on Semiconductors ”; pp. 393 – 415 in Pulsed Laser Deposition of Thin Films, Edited by D. B. Chrisey, and G. K. Hubler. Wiley, New York, 1994.en_US
dc.identifier.citedreferenceM.-B. Lee, M. Kawasaki, M. Yoshimoto, and H. Koinuma, “ Heteroepitaxial Growth of BaTiO 3 Films on Si by Pulsed Laser Deposition,” Appl. Phys. Lett., 66 [11] 1331 – 3 ( 1995 ).en_US
dc.identifier.citedreferenceJ. Lettieri, J. H. Haeni, and D. G. Schlom, “ Critical Issues in the Heteroepitaxial Growth of Alkaline-Earth Oxides on Silicon,” J. Vac. Sci. Technol. A, 20 [4] 1332 – 40 ( 2002 ).en_US
dc.identifier.citedreferenceE. G. Jacobs, Y. G. Rho, R. F. Pinizzotto, S. R. Summerfelt, and B. E. Gnade, “ Effect of a Ge Barrier on the Microstructure of BaTiO 3 Deposited on Silicon by Pulsed Laser Ablation ”; pp. 379 – 84 in Laser Ablation in Materials Processing: Fundamentals and Applications, Vol. 285, Edited by B. Braren, J. J. Dubowski, and D. Norton. Materials Research Society, Pittsburgh, 1993.en_US
dc.identifier.citedreferenceD. P. Norton, J. D. Budai, and M. F. Chisholm, “ Hydrogen-Assisted Pulsed-Laser Deposition of (001) CeO 2 on (001) Ge,” Appl. Phys. Lett., 76 [13] 1677 – 9 ( 2000 ).en_US
dc.identifier.citedreferenceK. Nashimoto, D. K. Fork, and T. H. Geballe, “ Epitaxial Growth of MgO on GaAs(001) for Growing Epitaxial BaTiO 3 Thin Films by Pulsed Laser Deposition,” Appl. Phys. Lett., 60 [10] 1199 – 201 ( 1992 ).en_US
dc.identifier.citedreferenceY. Liang, J. Kulik, T. C. Eschrich, R. Droopad, Z. Yu, and P. Maniar, “ Hetero-Epitaxy of Perovskite Oxides on GaAs(001) by Molecular Beam Epitaxy,” Appl. Phys. Lett., 85 [7] 1217 – 9 ( 2004 ).en_US
dc.identifier.citedreferenceE. Vasco, L. Vazquez, M. Aguilo, and C. Zaldo, “ Epitaxial Growth of Y-Stabilised Zirconia Films on (100) InP Substrates by Pulsed Laser Deposition,” J. Cryst. Growth, 209 [4] 883 – 9 ( 2000 ).en_US
dc.identifier.citedreferenceD. P. Norton, S. J. Pearton, H. M. Christen, and J. D. Budai, “ Hydrogen-Assisted Pulsed-Laser Deposition of Epitaxial CeO 2 Films on (001) InP,” Appl. Phys. Lett., 80 [1] 106 – 8 ( 2002 ).en_US
dc.identifier.citedreferenceC.-R. Cho, J.-Y. Hwang, J.-P. Kim, S.-Y. Jeong, S.-G. Yoon, and W.-J. Lee, “ Growth and Characterization of (Ba 0.5 Sr 0.5 )TiO 3 Films Epitaxially Grown on (002) GaN/(0006) Al 2 O 3 Electrode,” Jpn. J. Appl. Phys., Part 2, 43 [11A] L1425 – 8 ( 2004 ).en_US
dc.identifier.citedreferenceH. S. Craft, J. F. Ihlefeld, M. D. Losego, R. Collazo, Z. Sitar, and J-P. Maria, “ MgO Epitaxy on GaN (0002) Surfaces by Molecular Beam Epitaxy,” Appl. Phys. Lett., 88 [21] 212906 ( 2006 ).en_US
dc.identifier.citedreferenceW. Tian, V. Vaithyanathan, D. G. Schlom, Q. Zhan, S. Y. Yang, Y. H. Chu, and R. Ramesh, “ Epitaxial Integration of (0001) BiFeO 3 with (0001) GaN,” Appl. Phys. Lett., 90 [17] 172908 ( 2007 ).en_US
dc.identifier.citedreferenceD. K. Fork, D. B. Fenner, R. W. Barton, J. M. Phillips, G. A. N. Connell, J. B. Boyce, and T. H. Geballe, “ High Critical Currents in Strained Epitaxial YBa 2 Cu 3 O 7−Δ on Si,” Appl. Phys. Lett., 57 [11] 1161 – 3 ( 1990 ).en_US
dc.identifier.citedreferenceH. Ishiwara, N. Tsuji, H. Mori, and H. Nohira, “ Preparation of YbBa 2 Cu 3 O 7 x Films on Si(100) Substrates Using SrTiO 3 Buffer Layers,” Appl. Phys. Lett., 61 [12] 1459 – 61 ( 1992 ).en_US
dc.identifier.citedreferenceR. Ramesh, H. Gilchrist, T. Sands, V. G. Keramidas, R. Haakenaasen, and D. K. Fork, “ Ferroelectric La–Sr–Co–O/Pb–Zr–Ti–O/La–Sr–Co–O Heterostructures on Silicon via Template Growth,” Appl. Phys. Lett., 63 [26] 3592 – 4 ( 1993 ).en_US
dc.identifier.citedreferenceK. Nashimoto, D. K. Fork, F. A. Ponce, and J. C. Tramontana, “ Epitaxial BaTiO 3 /MgO Structure Grown on GaAs(100) by Pulsed Laser Deposition,” Jpn. J. Appl. Phys., Part 1, 32 [9B] 4099 – 102 ( 1993 ).en_US
dc.identifier.citedreferenceV. Srikant, E. J. Tarsa, D. R. Clarke, and J. S. Speck, “ Crystallographic Orientation of Epitaxial BaTiO 3 Films : The Role of Thermal-Expansion Mismatch with the Substrate,” J. Appl. Phys., 77 [4] 1517 – 22 ( 1995 ).en_US
dc.identifier.citedreferenceT. Maruyama, M. Saitoh, I. Sakai, T. Hidaka, Y. Yano, and T. Noguchi, “ Growth and Characterization of 10-nm-Thick c -Axis Oriented Epitaxial PbZr 0.25 Ti 0.75 O 3 Thin Films on (100)Si Substrate,” Appl. Phys. Lett., 73 [24] 3524 – 6 ( 1998 ).en_US
dc.identifier.citedreferenceA. Lin, X. Hong, V. Wood, A. Verevkin, C. H. Ahn, R. A. McKee, F. J. Walker, and E. D. Specht, “ Epitaxial Growth of Pb(Zr 0.2 Ti 0.8 )O 3 on Si and its Nanoscale Piezoelectric Properties,” Appl. Phys. Lett., 78 [14] 2034 – 6 ( 2001 ).en_US
dc.identifier.citedreferenceB. T. Liu, K. Maki, Y. So, V. Nagarajan, R. Ramesh, J. Lettieri, J. H. Haeni, D. G. Schlom, W. Tian, X. Q. Pan, F. J. Walker, and R. A. McKee, “ Epitaxial La-doped SrTiO 3 on Silicon : A Conductive Template for Epitaxial Ferroelectrics on Silicon,” Appl. Phys. Lett., 80 [25] 4801 – 3 ( 2002 ).en_US
dc.identifier.citedreferenceY. Liang, J. Kulik, Y. Wei, T. Eschrich, J. Curless, B. Craigo, and S. Smith, “ Hetero-Epitaxy of Crystalline Perovskite Oxides on GaAs(001) ”; pp. 379 – 84 in Fundamentals of Novel Oxide/Semiconductor Interfaces, Vol. 786, Edited by C. R. Abernathy, E. P. Gusev, D. Schlom, and S. Stemmer. Materials Research Society, Warrendale, 2004.en_US
dc.identifier.citedreferenceS. Y. Yang, F. Zavaliche, L. Mohaddes-Ardabili, V. Vaithyanathan, D. G. Schlom, Y. J. Lee, Y. H. Chu, M. P. Cruz, Q. Zhan, T. Zhao, and R. Ramesh, “ Metalorganic Chemical Vapor Deposition of Lead-Free Ferroelectric BiFeO 3 Films for Memory Applications,” Appl. Phys. Lett., 87 [10] 102903 ( 2005 ).en_US
dc.identifier.citedreferenceA. Posadas, J.-B. Yau, C. H. Ahn, J. Han, S. Gariglio, K. Johnston, K. M. Rabe, and J. B. Neaton, “ Epitaxial Growth of Multiferroic YMnO 3 on GaN,” Appl. Phys. Lett., 87 [17] 171915 ( 2005 ).en_US
dc.identifier.citedreferenceJ. K. G. Panitz and C. C. Hu, “ Radio-Frequency-Sputtered Tetragonal Barium Titanate Films on Silicon,” J. Vac. Sci. Technol., 16 [2] 315 – 8 ( 1979 ).en_US
dc.identifier.citedreferenceV. S. Dharmadhikari and W. W. Grannemann, “ AES Study on the Chemical Composition of Ferroelectric BaTiO 3 Thin Films RF Sputter-Deposited on Silicon,” J. Vac. Sci. Technol. A, 1 [2] 483 – 5 ( 1983 ).en_US
dc.identifier.citedreferenceS. Matsubara, T. Sakuma, S. Yamamichi, H. Yamaguchi, and Y. Miyasaka, “ Interface Structure and Dielectric Properties of SrTiO 3 Thin Film Sputter-Deposited onto Si Substrates ”; pp. 243 – 53 in Ferroelectric Thin Films, Materials Research Society Proceedings, Vol. 200, Edited by E. R. Myers, and A. I. Kingon. Materials Research Society, Pittsburgh, PA, 1990.en_US
dc.identifier.citedreferenceT. Sakuma, S. Yamamichi, S. Matsubara, H. Yamaguchi, and Y. Miyasaka, “ Barrier Layers for Realization of High Capacitance Density in SrTiO 3 Thin-Film Capacitor on Silicon,” Appl. Phys. Lett., 57 [23] 2431 – 3 ( 1990 ).en_US
dc.identifier.citedreferenceH. Yamaguchi, S. Matsubara, and Y. Miyasaka, “ Reactive Coevaporation Synthesis and Characterization of SrTiO 3 Thin Films,” Jpn. J. Appl. Phys., 30 [9B] 2197 – 9 ( 1991 ).en_US
dc.identifier.citedreferenceH. Nagata, T. Tsukahara, S. Gonda, M. Yoshimoto, and H. Koinuma, “ Heteroepitaxial Growth of CeO 2 (001) Films on Si(001) Substrates by Pulsed Laser Deposition in Ultrahigh Vacuum,” Jpn. J. Appl. Phys., 30 [6B] L1136 – 8 ( 1991 ).en_US
dc.identifier.citedreferenceY. Shichi, S. Tanimoto, T. Goto, K. Kuroiwa, and Y. Tarui, “ Interaction of PbTiO 3 Films with Si Substrate,” Jpn. J. Appl. Phys., 33 [9B] 5172 – 7 ( 1994 ).en_US
dc.identifier.citedreferenceD. H. Looney, “ Semiconducting Translating Device ”; US Patent No. 2,791,758, May 7, 1957.en_US
dc.identifier.citedreferenceW. L. Brown, “ Semiconductive Device ”; US Patent No. 2,791,759, May 7, 1957.en_US
dc.identifier.citedreferenceI. M. Ross, “ Semiconducting Translating Device ”; US Patent No. 2,791,760, May 7, 1957.en_US
dc.identifier.citedreferenceJ. A. Morton, “ Electrical Switching and Storage ”; US Patent No. 2,791,761, May 7, 1957.en_US
dc.identifier.citedreferenceJ. L. Moll and Y. Tarui, “ A New Solid State Memory Resistor,” IEEE Trans. Electron Devices, 10 [5] 338 – 9 ( 1963 ).en_US
dc.identifier.citedreferenceP. M. Heyman and G. H. Heilmeier, “ A Ferroelectric Field Effect Device,” Proc. IEEE, 54 [6] 842 – 8 ( 1966 ).en_US
dc.identifier.citedreferenceG. G. Teather and L. Young, “ Non-Destructive Readout of Ferroelectrics by Field Effect Conductivity Modulation,” Solid State Electron., 11 [5] 527 – 33 ( 1968 ).en_US
dc.identifier.citedreferenceS.-Y. Wu, “ A New Ferroelectric Memory Device, Metal-Ferroelectric-Semiconductor Transistor,” IEEE Trans. Electron Devices, 21 [8] 499 – 504 ( 1974 ).en_US
dc.identifier.citedreferenceM. Suzuki, “ Review on Future Ferroelectric Nonvolatile Memory : FeRAM—From the Point of View of Epitaxial Oxide Thin Films,” J. Ceram. Soc. Jpn., 103 [11] 1099 – 111 ( 1995 ).en_US
dc.identifier.citedreferenceM. Suzuki, “ Review on Future Ferroelectric Nonvolatile Memory : FeRAM - From the Point of View of Epitaxial Oxide Thin Films,” J. Ceram. Soc. Jpn. Int. Ed., 103 [11] 1088 – 99 ( 1995 ).en_US
dc.identifier.citedreferenceK. J. Hubbard and D. G. Schlom, “ Thermodynamic Stability of Binary Oxides in Contact with Silicon,” J. Mater. Res., 11 [11] 2757 – 76 ( 1996 ).en_US
dc.identifier.citedreferenceD. G. Schlom, C. A. Billman, J. H. Haeni, J. Lettieri, P. H. Tan, R. R. M. Held, S. VÖlk, and K. J. Hubbard, “ High- K Candidates for Use as the Gate Dielectric in Silicon MOSFETs ”; pp. 31 – 78 in Thin Films and Heterostructures for Oxide Electronics, Edited by S. B. Ogale. Springer, New York, 2005.en_US
dc.identifier.citedreferenceI. Barin, Thermochemical Data of Pure Substances, Vols. I and II, 3rd edition, VCH, Weinheim, 1995.en_US
dc.identifier.citedreferenceE. J. Tarsa, K. L. McCormick, and J. S. Speck, “ Common Themes in the Epitaxial Growth of Oxides on Semiconductors ”; pp. 73 – 85 in Epitaxial Oxide Thin Films and Heterostructures, Materials Research Society Proceedings, Vol. 341, Edited by D. K. Fork, J. M. Phillips, R. Ramesh, and R. M. Wolf. Materials Research Society, Pittsburgh, PA, 1994.en_US
dc.identifier.citedreferenceJ. M. Phillips, “ Substrate Selection for Thin-Film Growth,” MRS Bull., 20 [4] 35 – 9 ( 1995 ).en_US
dc.identifier.citedreferenceD. G. Schlom and J. H. Haeni, “ A Thermodynamic Approach to Selecting Alternative Gate Dielectrics,” MRS Bull., 27 [3] 198 – 204 ( 2002 ).en_US
dc.identifier.citedreferenceV. V. Il'chenko, G. V. Kuznetsov, V. I. Strikha, and A. I. Tsyganova, “ The Formation of a Barium Silicate Layer on Silicon,” Mikroelektron, 27 [5] 340 – 5 ( 1998 ).en_US
dc.identifier.citedreferenceV. V. Il'chenko, G. V. Kuznetsov, V. I. Strikha, and A. I. Tsyganova, “ The Formation of a Barium Silicate Layer on Silicon,” Russ. Microelectron., 27 [5] 291 – 6 ( 1998 ).en_US
dc.identifier.citedreferenceV. V. Il'chenko and G. V. Kuznetsov, “ Effect of Oxygen on the Chemical Reactions and Electron Work Function in Ba–Si and BaO–Si Structures,” Pis'ma Zh. Tekh. Fiz., 27 [8] 58 – 63 ( 2001 ).en_US
dc.identifier.citedreferenceV. V. Il'chenko and G. V. Kuznetsov, “ Effect of Oxygen on the Chemical Reactions and Electron Work Function in Ba–Si and BaO–Si Structures,” Sov. Tech. Phys. Lett., 27 [4] 333 – 5 ( 2001 ).en_US
dc.identifier.citedreferenceY. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee, Thermal Expansion: Nonmetallic Solids, Vol. 13 of Thermophysical Properties of Matter, p. 154. Plenum, New York, 1977.en_US
dc.identifier.citedreferenceD. K. Fork, F. A. Ponce, J. C. Tramontana, N. Newman, J. M. Phillips, and T. H. Geballe, “ High Critical Current Densities in Epitaxial YBa 2 Cu 3 O 7−Δ Thin films on Silicon-on-Sapphire,” Appl. Phys. Lett., 58 [21] 2432 – 4 ( 1991 ).en_US
dc.identifier.citedreferenceE. S. Machlin and P. Chaudhari, “ Theory of ‘Pseudomorphic Stabilization’ of Metastable Phases in Thin Film Form ”; pp. 11 – 29 in Synthesis and Properties of Metastable Phases, Edited by E. S. Machlin, and T. J. Rowland. The Metallurgical Society of AIME, Warrendale, 1980.en_US
dc.identifier.citedreferenceC. P. Flynn, “ Strain-Assisted Epitaxial Growth of New Ordered Compounds,” Phys. Rev. Lett., 57 [5] 599 – 602 ( 1986 ).en_US
dc.identifier.citedreferenceR. Bruinsma and A. Zangwill, “ Structural Transitions in Epitaxial Overlayers,” J. Phys. (Paris), 47 [12] 2055 – 73 ( 1986 ).en_US
dc.identifier.citedreferenceR. F. C. Farrow (ed), Molecular Beam Epitaxy: Applications to Key Materials. Noyes, Park Ridge, 1995.en_US
dc.identifier.citedreferenceE. M. Levin, C. R. Robbins, and H. F. McMurdie (eds), Phase Diagrams for Ceramists, Vol. 1, p. 127. American Ceramic Society, Columbus, 1964.en_US
dc.identifier.citedreferenceF. Sugawara and S. Iida, “ New Magnetic Perovskites BiMnO 3 and BiCrO 3,” J. Phys. Soc. Jpn., 20 [8] 1529 ( 1965 ).en_US
dc.identifier.citedreferenceH. Faqir, H. Chiba, M. Kikuchi, Y. Syono, M. Mansori, P. Satre, and A. Sebaoun, “ High-Temperature XRD and DTA Studies of BiMnO 3 Perovskite,” J. Solid State Chem., 142 [1] 113 – 9 ( 1999 ).en_US
dc.identifier.citedreferenceT. Atou, H. Chiba, K. Ohoyama, Y. Yamaguchi, and Y. Syono, “ Structure Determination of Ferromagnetic Perovskite BiMnO 3,” J. Solid State Chem., 145 [2] 639 – 42 ( 1999 ).en_US
dc.identifier.citedreferenceY. Maeno, T. M. Rice, and M. Sigrist, “ The Intriguing Superconductivity of Strontium Ruthenate,” Phys. Today, 54 [1] 42 – 7 ( 2001 ).en_US
dc.identifier.citedreferenceN. Shirakawa, K. Murata, S. Nishizaki, Y. Maeno, and T. Fujita, “ Pressure Dependence of Superconducting Critical Temperature of Sr 2 RuO 4,” Phys. Rev. B, 56 [13] 7890 – 3 ( 1997 ).en_US
dc.identifier.citedreferenceC. W. Chu, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, and Y. Q. Wang, “ Evidence for Superconductivity above 40 K in the La–Ba–Cu–O Compound System,” Phys. Rev. Lett., 58 [4] 405 – 7 ( 1987 ).en_US
dc.identifier.citedreferenceJ. A. Kafalas and J. M. Longo, “ High Pressure Synthesis of (ABX 3 )(AX) n Compounds,” J. Solid State Chem., 4 [1] 55 – 9 ( 1972 ).en_US
dc.identifier.citedreferenceI. I. Prosychev and I. S. Shaplygin, “ Interaction in the BaO–RuO 2 System,” Zh. Neorg. Khim., 25, 876 – 7 ( 1980 ).en_US
dc.identifier.citedreferenceI. I. Prosychev and I. S. Shaplygin, Russ. J. Inorg. Chem., 25 [3] 489 ( 1980 ).en_US
dc.identifier.citedreferenceM. I. Gadzhiev and I. S. Shaplygin, “ Reactions in the BaO–RuO 2 System,” Zh. Neorg. Khim., 29, 2154 – 5 ( 1984 ).en_US
dc.identifier.citedreferenceM. I. Gadzhiev and I. S. Shaplygin, “ Reactions in the BaO–RuO 2 System,” Russ. J. Inorg. Chem., 29 [8] 1230 – 1 ( 1984 ).en_US
dc.identifier.citedreferenceT. L. Popova, N. G. Kisel, V. I. Krivobok, and V. P. Karlov, “ Interaction in the BaO–RuO 2 System,” Ukr. Khim. Zh., 48 [5] 457 – 60 ( 1982 ).en_US
dc.identifier.citedreferenceT. L. Popova, N. G. Kisel, V. I. Krivobok, and V. P. Karlov, “ Interaction in the BaO–RuO 2 System,” Sov. Prog. Chem., 48, 8 – 10 ( 1982 ).en_US
dc.identifier.citedreferenceJ. B. Clark, P. W. Richter, and L. Du Toit, “ High-Pressure Synthesis of YScO 3, HoScO 3, ErScO 3, and TmScO 3, and a Reevaluation of the Lattice Constants of the Rare Earth Scandates,” J. Solid State Chem., 23 [1–2] 129 – 34 ( 1978 ).en_US
dc.identifier.citedreferenceR. P. Liferovich and R. H. Mitchell, “ A Structural Study of Ternary Lanthanide Orthoscandate Perovskites,” J. Solid State Chem., 177 [6] 2188 – 97 ( 2004 ).en_US
dc.identifier.citedreferenceE. M. Levin, C. R. Robbins, and H. F. McMurdie (eds), Phase Diagrams for Ceramists, Vol. 2, p. 93. American Ceramic Society, Columbus, 1969.en_US
dc.identifier.citedreferenceN. Orloff, I. Takeuchi, J. C. Booth, D. Gu, A. Lewandoski, J. Mateu, C. J. Fennie, K. M. Rabe, W. Tian, and D. G. Schlom, “ Broadband and Temperature Dependent Permittivity Measurements of Ruddlesden–Popper Sr n +1 Ti n O 3 n +1 ( n =1,2,3) Thin Films ”; (unpublished).en_US
dc.identifier.citedreferenceC. J. Fennie and K. M. Rabe, “ Structural and Dielectric Properties of Sr 2 TiO 4 from First Principles,” Phys. Rev. B, 68 [18] 184111 ( 2003 ).en_US
dc.identifier.citedreferenceM. A. Zurbuchen, J. Schubert, Y. Jia, W. Tian, V. Cherman, M. D. Biegalski, D. Fong, M. E. Hawley, A. K. Tagantsev, S. K. Streiffer, and D. G. Schlom, “ Charge-Mediated Synthesis of Sr 4 Bi 4 Ti 7 O 24 ”; (unpublished).en_US
dc.identifier.citedreferenceE. C. Subbarao, “ A Family of Ferroelectric Bismuth Compounds,” J. Phys. Chem. Solids, 23, 665 – 76 ( 1962 ).en_US
dc.identifier.citedreferenceR. A. Armstrong and R. E. Newnham, “ Bismuth Titanate Solid Solutions,” Mater. Res. Bull., 7 [10] 1025 – 34 ( 1972 ).en_US
dc.identifier.citedreferenceJ.van Suchtelen, “ Product Properties : A New Application of Composite Materials,” Philips Res. Rep., 27 [1] 28 – 37 ( 1972 ).en_US
dc.identifier.citedreferenceJ. van den Boomgaard, D. R. Terrell, R. A. J. Born, and H. F. J. I. Giller, “ An in Situ Grown Eutectic Magnetoelectric Composite Material : Part 1 Composition and Unidirectional Solidification,” J. Mater. Sci., 9 [10] 1705 – 9 ( 1974 ).en_US
dc.identifier.citedreferenceA. M. J. G. van Run, D. R. Terrell, and J. H. Scholing, “ An in Situ Grown Eutectic Magnetoelectric Composite Material : Part 2 Physical Properties,” J. Mater. Sci., 9 [10] 1710 – 4 ( 1974 ).en_US
dc.identifier.citedreferenceL. P. M. Bracke and R. G. van Vliet, “ A Broadband Magneto-Electric Transducer using a Composite Material,” Int. J. Electron., 51 [3] 255 – 62 ( 1981 ).en_US
dc.identifier.citedreferenceR. E. Newnham, D. P. Skinner, and L. E. Cross, “ Connectivity and Piezoelectric–Pyroelectric Composites,” Mater. Res. Bull., 13 [5] 525 – 36 ( 1978 ).en_US
dc.identifier.citedreferenceJ. van den Boomgaard and R. A. J. Born, “ A Sintered Magnetoelectric Composite Material BaTiO 3 –Ni(Co,Mn)Fe 2 O 4,” J. Mater. Sci., 13 [7] 1538 – 48 ( 1978 ).en_US
dc.identifier.citedreferenceG. Srinivasan, E. T. Rasmussen, A. A. Bush, K. E. Kamentsev, V. F. Meshcheryakov, and Y. K. Fetisov, “ Structural and Magnetoelectric Properties of M Fe 2 O 4 -PZT ( M =Ni, Co) and La x (Ca, Sr) 1− x MnO 3 –PZT Multilayer Composites,” Appl. Phys. A, 78 [5] 721 – 8 ( 2004 ).en_US
dc.identifier.citedreferenceK. Lefki and G. J. M. Dormans, “ Measurement of Piezoelectric Coefficients of Ferroelectric Thin Films,” J. Appl. Phys., 76 [3] 1764 – 7 ( 1994 ).en_US
dc.identifier.citedreferenceM. A. Zurbuchen, S. Saha, T. Wu, J. Mitchell, and S. K. Streiffer, “ Multiferroic Composite Ferroelectric–Ferromagnetic Films,” Appl. Phys. Lett., 87 [23] 232908 ( 2005 ).en_US
dc.identifier.citedreferenceH. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, “ Multiferroic BaTiO 3 –CoFe 2 O 4 Nanostructures,” Science, 303 [5658] 661 – 3 ( 2004 ).en_US
dc.identifier.citedreferenceE. Klokholm, J. W. Matthews, A. F. Mayadas, and J. Angilello ; pp. 105 – 9 in Magnetism and Magnetic Materials, Edited by C. D. Graham Jr., and J. J. Rhyne. American Institute of Physics, New York, 1972.en_US
dc.identifier.citedreferenceL. B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution, pp. 60 – 83, 283–90 Cambridge University Press, Cambridge, 2003.en_US
dc.identifier.citedreferenceJ. S. Speck, A. C. Daykin, A. Seifert, A. E. Romanov, and W. Pompe, “ Domain Configurations due to Multiple Misfit Relaxation Mechanisms in Epitaxial Ferroelectric Thin Films. III. Interfacial Defects and Domain Misorientations,” J. Appl. Phys., 78 [3] 1696 ( 1995 ).en_US
dc.identifier.citedreferenceW. D. Nix and B. M. Clemens, “ Crystallite Coalescence : A Mechanism for Intrinsic Tensile Stresses in Thin Films,” J. Mater. Res., 14 [8] 3467 – 73 ( 1999 ).en_US
dc.identifier.citedreferenceT. R. Taylor, P. J. Hansen, B. Acikel, N. Pervez, R. A. York, S. K. Streiffer, and J. S. Speck, “ Impact of Thermal Strain on the Dielectric Constant of Sputtered Barium Strontium Titanate Thin Films,” Appl. Phys. Lett., 80 [11] 1978 – 80 ( 2002 ).en_US
dc.identifier.citedreferenceC. L. Canedy, H. Li, S. P. Alpay, L. Salamanca-Riba, A. L. Roytburd, and R. Ramesh, “ Dielectric Properties in Heteroepitaxial Ba 0.6 Sr 0.4 TiO 3 Thin Films : Effect of Internal Stresses and Dislocation-Type Defects,” Appl. Phys. Lett., 77 [11] 1695 – 7 ( 2000 ).en_US
dc.identifier.citedreferenceI. B. Misirlioglu, A. L. Vasiliev, M. Aindow, S. P. Alpay, and R. Ramesh, “ Threading Dislocation Generation in Epitaxial (Ba,Sr)TiO 3 Films Grown on (001) LaAlO 3 by Pulsed Laser Deposition,” Appl. Phys. Lett., 84 [10] 1742 – 4 ( 2004 ).en_US
dc.identifier.citedreferenceM.-W. Chu, I. Szafraniak, R. Scholz, C. Harnagea, D. Hesse, M. Alexe, and U. GÖsele, “ Impact of Misfit Dislocations on the Polarization Instability of Epitaxial Nanostructured Ferroelectric Perovskites,” Nat. Mater., 3 [2] 87 – 90 ( 2004 ).en_US
dc.identifier.citedreferenceS. P. Alpay, I. B. Misirlioglu, V. Nagarajan, and R. Ramesh, “ Can Interface Dislocations Degrade Ferroelectric Properties,” Appl. Phys. Lett., 85 [11] 2044 – 6 ( 2004 ).en_US
dc.identifier.citedreferenceV. Nagarajan, C. L. Jia, H. Kohlstedt, R. Waser, I. B. Misirlioglu, S. P. Alpay, and R. Ramesh, “ Misfit Dislocations in Nanoscale Ferroelectric Heterostructures,” Appl. Phys. Lett., 86 [19] 192910 ( 2005 ).en_US
dc.identifier.citedreferenceN. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, “ Effect of Mechanical Boundary Conditions on Phase Diagrams of Epitaxial Ferroelectric Thin Films,” Phys. Rev. Lett., 80 [9] 1988 – 91 ( 1998 ).en_US
dc.identifier.citedreferenceN. A. Pertsev and V. G. Koukhar, “ Polarization Instability in Polydomain Ferroelectric Epitaxial Thin Films and the Formation of Heterophase Structures,” Phys. Rev. Lett., 84 [16] 3722 – 5 ( 2000 ).en_US
dc.identifier.citedreferenceV. G. Koukhar, N. A. Pertsev, and R. Waser, “ Thermodynamic Theory of Epitaxial Ferroelectric Thin Films with Dense Domain Structures,” Phys. Rev. B, 64 [21] 214103 ( 2001 ).en_US
dc.identifier.citedreferenceY. L. Li, S. Y. Hu, Z. K. Liu, and L. Q. Chen, “ Phase-Field Model of Domain Structures in Ferroelectric Thin Films,” Appl. Phys. Lett., 78 [24] 3878 – 80 ( 2001 ).en_US
dc.identifier.citedreferenceY. L. Li, S. Y. Hu, Z. K. Liu, and L. Q. Chen, “ Effect of Substrate Constraint on the Stability and Evolution of Ferroelectric Domain Structures in Thin Films,” Acta Mater., 50 [2] 395 – 411 ( 2002 ).en_US
dc.identifier.citedreferenceO. DiÉguez, S. Tinte, A. Antons, C. Bungaro, J. B. Neaton, K. M. Rabe, and D. Vanderbilt, “ Ab Initio Study of the Phase Diagram of Epitaxial BaTiO 3,” Phys. Rev B, 69 [21] 212101 ( 2004 ).en_US
dc.identifier.citedreferenceY. L. Li and L. Q. Chen, “ Temperature–Strain Phase Diagram for BaTiO 3 Thin Films,” Appl. Phys. Lett., 88 [7] 072905 ( 2006 ).en_US
dc.identifier.citedreferenceN. A. Pertsev, V. G. Kukhar, H. Kohlstedt, and R. Waser, “ Phase Diagrams and Physical Properties of Single-Domain Epitaxial Pb(Zr 1− x Ti x )O 3 Thin Films,” Phys. Rev. B, 67 [5] 54107 ( 2003 ).en_US
dc.identifier.citedreferenceY. L. Li, S. Choudhury, Z. K. Liu, and L. Q. Chen, “ Effect of External Mechanical Constraints on the Phase Diagram of Epitaxial PbZr 1− x Ti x O 3 Thin Films-Thermodynamic Calculations and Phase-Field Simulations,” Appl. Phys. Lett., 83 [8] 1608 – 10 ( 2003 ).en_US
dc.identifier.citedreferenceS. Choudhury, Y. L. Li, and L. Q. Chen, “ A Phase Diagram for Epitaxial PbZr 1− x Ti x O 3 Thin Films at the Bulk Morphotropic Boundary Composition,” J. Am. Ceram. Soc., 88 [6] 1669 – 72 ( 2005 ).en_US
dc.identifier.citedreferenceN. A. Pertsev, A. K. Tagantsev, and N. Setter, “ Phase Transitions and Strain-Induced Ferroelectricity in SrTiO 3 Epitaxial Thin Films,” Phys. Rev. B, 61 [2] R825 – 9 ( 2000 ).en_US
dc.identifier.citedreferenceN. A. Pertsev, A. K. Tagantsev, and N. Setter, “ Erratum : Phase Transitions and Strain-Induced Ferroelectricity in SrTiO 3 Epitaxial Thin Films [Phys. Rev. B 61, R825 (2000)],” Phys. Rev. B, 65 [21] 219901 ( 2002 ).en_US
dc.identifier.citedreferenceA. Antons, J. B. Neaton, K. M. Rabe, and D. Vanderbilt, “ Tunability of the Dielectric Response of Epitaxially Strained SrTiO 3 from First Principles,” Phys. Rev. B, 71 [2] 024102 ( 2005 ).en_US
dc.identifier.citedreferenceY. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. Trolier-McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, “ Phase Transitions and Domain Structures in Strained Pseudocubic (100) SrTiO 3 Thin Films,” Phys. Rev. B, 73 [18] 184112 ( 2006 ).en_US
dc.identifier.citedreferenceA. Vasudevarao, A. Kumar, L. Tian, J. H. Haeni, Y. L. Li, C.-J. Eklund, Q. X. Jia, R. Uecker, P. Reiche, K. M. Rabe, L. Q. Chen, D. G. Schlom, and V. Gopalan, “ Mutiferroic Domain Dynamics in Strained Strontium Titanate,” Phys. Rev. Lett., 97 [25] 257602 ( 2006 ).en_US
dc.identifier.citedreferenceY. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. Trolier-McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, “ Phase Transitions and Domain Structures in Strained Pseudocubic (100) SrTiO 3 Thin Films,” Phys. Rev. B, 73 [18] 184112 ( 2006 ).en_US
dc.identifier.citedreferenceP. Irvin, J. Levy, J. H. Haeni, and D. G. Schlom, “ Localized Microwave Resonances in Strained SrTiO 3 Thin Films,” Appl. Phys. Lett., 88 [4] 042902 ( 2006 ).en_US
dc.identifier.citedreferenceS. Denev, A. Kumar, M. D. Biegalski, H. W. Jang, C. M. Folkman, A. Vasudevarao, Y. Han, I. M. Reaney, S. Trolier-McKinstry, C. B. Eom, D. G. Schlom, and V. Gopalan, “ Magnetic Color Symmetry of Lattice Rotations in a Diamagnetic Material,” Phys. Rev. Lett., 100 [25] 257601 ( 2008 ).en_US
dc.identifier.citedreferenceH. Z. Ma, J. Levy, M. D. Biegalski, D. G. Schlom, and S. Trolier-McKinstry, “ Room-Temperature Electrooptic Properties of Strained SrTiO 3 Films Grown on DyScO 3,” J. Appl. Phys., submitted.en_US
dc.identifier.citedreferenceA. Vasudevarao, S. Denev, M. D. Biegalski, Y. L. Li, L. Q. Chen, S. Trolier-McKinstry, D. G. Schlom, and V. Gopalan, “ Polarization Rotation Transitions in Anisotropically Strained SrTiO 3 Thin Films,” Appl. Phys. Lett., 92 [19] 192902 ( 2008 ).en_US
dc.identifier.citedreferenceM. D. Biegalski, S. Trolier-McKinstry, D. G. Schlom, S. K. Streiffer, M. Bernhagen, P. Reiche, and R. Uecker, “ Asymmetric Dielectric Properties of SrTiO 3 Thin Films on DyScO 3 Substrates,” J. Appl. Phys., submitted.en_US
dc.identifier.citedreferenceS. Kamba, D. Nuzhnyy, V. Goian, S. Veljko, C. M. Brooks, J. H. Lee, D. G. Schlom, J.-H. Lee, J. Schubert, E. John, T. Katsufuji, and J. Petzelt, “ Ferroelectricity in SrTiO 3 and EuTiO 3 Strained Thin Films : Polar Phonon Properties ”; Presented at Fundamental Physics of Ferroelectrics, Williamsburg, Virginia, 2008.en_US
dc.identifier.citedreferenceS. K. Streiffer, J. A. Eastman, D. D. Fong, C. Thompson, A. Munkholm, M. V. R. Murty, O. Auciello, G. R. Bai, and G. B. Stephenson, “ Observation of Nanoscale 180° Stripe Domains in Ferroelectric PbTiO 3 Thin Films,” Phys. Rev. Lett., 89 [6] 067601 ( 2002 ).en_US
dc.identifier.citedreferenceE. D. Specht, H.-M. Christen, D. P. Norton, and L. A. Boatner, “ X-Ray Diffraction Measurement of the Effect of Layer Thickness on the Ferroelectric Transition in Epitaxial KTaO 3 /KNbO 3 Multilayers,” Phys. Rev. Lett., 80 [19] 4317 – 20 ( 1998 ).en_US
dc.identifier.citedreferenceH.-M. Christen, L. A. Knauss, and K. S. Harshavardhan, “ Field-Dependent Dielectric Permittivity of Paraelectric Superlattice Structures,” Mater. Sci. Eng. B, 56 [2–3] 200 – 3 ( 1998 ).en_US
dc.identifier.citedreferenceH. M. Christen, E. D. Specht, S. S. Silliman, and K. S. Harshavardhan, “ Ferroelectric and Antiferroelectric Coupling in Superlattices of Paraelectric Perovskites at Room Temperature,” Phys. Rev. B, 68 [2] 20101 ( 2003 ).en_US
dc.identifier.citedreferenceK. Abe, N. Yanase, K. Sano, M. Izuha, N. Fukushima, and T. Kawakubo, “ Modification of Ferroelectricity in Heteroepitaxial (Ba,Sr)TiO 3 Films for Non-Volatile Memory Applications,” Integr. Ferroelectr., 21 [1–4] 197 – 206 ( 1998 ).en_US
dc.identifier.citedreferenceN. Yanase, K. Abe, N. Fukushima, and T. Kawakubo, “ Thickness Dependence of Ferroelectricity in Heteroepitaxial BaTiO 3 Thin Film Capacitors,” Jpn. J. Appl. Phys., Part 1, 38 [9B] 5305 – 8 ( 1999 ).en_US
dc.identifier.citedreferenceM. Sepliarsky, S. R. Phillpot, M. G. Stachiotti, and R. L. Migoni, “ Ferroelectric Phase Transitions and Dynamical Behavior in KNbO 3 /KTaO 3 Superlattices by Molecular-Dynamics Simulation,” J. Appl. Phys., 91 [5] 3165 – 71 ( 2002 ).en_US
dc.identifier.citedreferenceV. Gopalan and R. Raj, “ Domain Structure–Second Harmonic Generation Correlation in Potassium Niobate Thin Films Deposited on a Strontium Titanate Substrate,” J. Am. Ceram. Soc., 79 [12] 3289 – 96 ( 1996 ).en_US
dc.identifier.citedreferenceV. Gopalan and R. Raj, “ Electric Field Induced Domain Rearrangement in Potassium Niobate Thin Films Studied by in Situ Second Harmonic Generation Measurements,” J. Appl. Phys., 81 [2] 865 – 75 ( 1997 ).en_US
dc.identifier.citedreferenceY. Barad, J. Lettieri, C. D. Theis, D. G. Schlom, V. Gopalan, J. C. Jiang, and X. Q. Pan, “ Probing Domain Microstructure in Ferroelectric Bi 4 Ti 3 O 12 Thin Films by Optical Second Harmonic Generation,” J. Appl. Phys., 89 [2] 1387 – 92 ( 2001 ).en_US
dc.identifier.citedreferenceY. Barad, J. Lettieri, C. D. Theis, D. G. Schlom, V. Gopalan, J. C. Jiang, and X. Q. Pan, “ Erratum : ‘Probing Domain Microstructure in Ferroelectric Bi 4 Ti 3 O 12 Thin Films by Optical Second Harmonic Generation,’ [J. Appl. Phys. 89, 1387 (2001)],” J. Appl. Phys., 89 [9] 5230 ( 2001 ).en_US
dc.identifier.citedreferenceM. Fiebig, D. FrÖhlich, T. Lottermoser, and M. Maat, “ Probing of Ferroelectric Surface and Bulk Domains in R MnO 3 ( R =Y, Ho) by Second Harmonic Generation,” Phys. Rev. B, 66 [14] 144102 ( 2002 ).en_US
dc.identifier.citedreferenceK. A. MÜller and H. Burkard, “ SrTiO 3 : An Intrinsic Quantum Paraelectric below 4K,” Phys. Rev. B, 19 [7] 3593 – 602 ( 1979 ).en_US
dc.identifier.citedreferenceR. C. Neville, B. Hoeneisen, and C. A. Mead, “ Permittivity of Strontium Titanate,” J. Appl. Phys., 43 [5] 2124 – 31 ( 1972 ).en_US
dc.identifier.citedreferenceP. W. Forsbergh Jr., “ Effect of a Two-Dimensional Pressure on the Curie Point of Barium Titanate,” Phys. Rev., 93 [4] 686 – 92 ( 1954 ).en_US
dc.identifier.citedreferenceC. J. Fennie and K. M. Rabe, “ Magnetic and Electric Phase Control in Epitaxial EuTiO 3 from First Principles,” Phys. Rev. Lett., 97 [26] 267602 ( 2006 ).en_US
dc.identifier.citedreferenceT. Ando, A. B. Fowler, and F. Stern, “ Electronic Properties of Two-Dimensional Systems,” Rev. Mod. Phys., 54 [2] 437 – 672 ( 1982 ).en_US
dc.identifier.citedreferenceA. Tsukazaki, A. Ohtomo, T. Kita, Y. Ohno, H. Ohno, and M. Kawasaki, “ Quantum Hall Effect in Polar Oxide Heterostructures,” Science, 315 [5817] 1388 – 91 ( 2007 ).en_US
dc.identifier.citedreferenceH. P. R. Frederikse, W. R. Thurber, and W. R. Hosler, “ Electronic Transport in Strontium Titanate,” Phys. Rev., 134 [2A] A442 – 5 ( 1964 ).en_US
dc.identifier.citedreferenceH. P. R. Frederikse and G. A. Candela, “ Magnetic Susceptibility of Insulating and Semiconducting Strontium Titanate,” Phys. Rev., 147 [2] 583 – 4 ( 1966 ).en_US
dc.identifier.citedreferenceH. Suzuki, H. Bando, Y. Ootuka, I. H. Inoue, T. Yamamoto, K. Takahashi, and Y. Nishihara, “ Superconductivity in Single-Crystalline Sr 1− x La x TiO 3,” J. Phys. Soc. Jpn., 65 [6] 1529 – 32 ( 1996 ).en_US
dc.identifier.citedreferenceM. Gurvitch, H. L. Stormer, R. C. Dynes, J. M. Graybeal, and D. C. Jacobson, “ Field Effect on Superconducting Surface Layers of SrTiO 3 ;” pp. 47 – 9, Extended Abstracts Superconducting Materials, Vol. EA–9, Edited by J. Bevk, and A. I. Braginski. Materials Research Society, Pittsburgh, 1986.en_US
dc.identifier.citedreferenceR. Dingle, H. L. StÖrmer, A. C. Gossard, and W. Wiegmann, “ Electron Mobilities in Modulation-Doped Semiconductor Heterojunction Superlattices,” Appl. Phys. Lett., 33 [7] 665 – 7 ( 1978 ).en_US
dc.identifier.citedreferenceR. J. Cava, “ Structural Chemistry and the Local Charge Picture of Copper Oxide Superconductors,” Science, 247 [4943] 656 – 62 ( 1990 ).en_US
dc.identifier.citedreferenceJ. H. Haeni, “ Nanoengineering of Ruddlesden-Popper Phases using Molecular Beam Epitaxy ”; Ph.D. Thesis, Pennsylvania State University, 2002. Available on-line at http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-181/index.htmlen_US
dc.identifier.citedreferenceG. B. Stringfellow (ed), Phase Equilibria Diagrams, Vol. 9, pp. 126, 130. American Ceramic Society, Westerville, 1992.en_US
dc.identifier.citedreferenceT. Ikeda, “ A Few Quarternary Systems of Perovskite Type A 2+ B 4+ O 3 Solid Solutions,” J. Phys. Soc. Jpn., 14 [10] 1286 – 94 ( 1959 ).en_US
dc.identifier.citedreferenceE. M. Levin, C. R. Robbins, and H. F. McMurdie (eds), Phase Diagrams for Ceramists, Vol. 1, p. 195. American Ceramic Society, Columbus, 1964.en_US
dc.identifier.citedreferenceA. K. Gutakovskii, L. I. Fedina, and A. L. Aseev, “ High Resolution Electron Microscopy of Semiconductor Interfaces,” Phys. Status Solidi A, 150 [1] 127 – 40 ( 1995 ).en_US
dc.identifier.citedreferenceS. Thoma and H. Cerva, “ Comparison of the Information Content in ⟨110⟩- and ⟨100⟩-Projected High-Resolution Transmission Electron Microscope Images for the Quantitative Analysis of AlAs/GaAs Interfaces,” Ultramicroscopy, 53 [1] 37 – 51 ( 1994 ).en_US
dc.identifier.citedreferenceS. Li, J. A. Eastman, J. M. Vetrone, R. E. Newnham, and L. E. Cross, “ Dielectric Response in Ferroelectric Superlattices,” Philos. Mag. B, 76 [1] 47 – 57 ( 1997 ).en_US
dc.identifier.citedreferenceN. Sai, B. Meyer, and D. Vanderbilt, “ Compositional Inversion Symmetry Breaking in Ferroelectric Perovskites,” Phys. Rev. Lett., 84 [24] 5636 – 9 ( 2000 ).en_US
dc.identifier.citedreferenceJ. B. Neaton and K. M. Rabe, “ Theory of Polarization Enhancement in Epitaxial BaTiO 3 /SrTiO 3 Superlattices,” Appl. Phys. Lett., 82 [10] 1586 – 8 ( 2003 ).en_US
dc.identifier.citedreferenceS. M. Nakhmanson, K. M. Rabe, and D. Vanderbilt, “ Polarization Enhancement in Two- and Three-Component Ferroelectric Superlattices,” Appl. Phys. Lett., 87 [10] 102906 ( 2005 ).en_US
dc.identifier.citedreferenceS. M. Nakhmanson, K. M. Rabe, and D. Vanderbilt, “ Predicting Polarization Enhancement in Multicomponent Ferroelectric Superlattices,” Phys. Rev. B, 73 [6] 060101 ( 2006 ).en_US
dc.identifier.citedreferenceJ. Chaloupka and G. Khaliullin, “ Orbital Order and Possible Superconductivity in LaNiO 3 /LaMO 3 Superlattices,” Phys. Rev. Lett., 100 [1] 016404 ( 2008 ).en_US
dc.identifier.citedreferenceT. Shimuta, O. Nakagawara, T. Makino, S. Arai, H. Tabata, and T. Kawai, “ Enhancement of Remanent Polarization in Epitaxial BaTiO 3 /SrTiO 3 Superlattices with ‘Asymmetric Structure’,” J. Appl. Phys., 91 [4] 2290 – 4 ( 2002 ).en_US
dc.identifier.citedreferenceM. H. Corbett, R. M. Bowman, J. M. Gregg, and D. T. Foord, “ Enhancement of Dielectric Constant and Associated Coupling of Polarization Behavior in Thin Film Relaxor Superlattices,” Appl. Phys. Lett., 79 [6] 815 – 7 ( 2001 ).en_US
dc.identifier.citedreferenceL. Kim, D. Jung, J. Kim, J. S. Kim, and J. Lee, “ Strain Manipulation in BaTiO 3 /SrTiO 3 Artificial Lattice Toward High Dielectric Constant and its Nonlinearity,” Appl. Phys. Lett., 82 [13] 2118 – 20 ( 2003 ).en_US
dc.identifier.citedreferenceD. O'Neill, R. M. Bowman, and J. M. Gregg, “ Dielectric Enhancement and Maxwell–Wagner Effects in Ferroelectric Superlattice Structures,” Appl. Phys. Lett., 77 [10] 1520 – 2 ( 2000 ).en_US
dc.identifier.citedreferenceG. Catalan, D. O'Neill, R. M. Bowman, and J. M. Gregg, “ Relaxor Features in Ferroelectric Superlattices : A Maxwell–Wagner Approach,” Appl. Phys. Lett., 77 [19] 3078 – 80 ( 2000 ).en_US
dc.identifier.citedreferenceH. Zheng, Q. Zhan, F. Zavaliche, M. Sherburne, F. Straub, M. P. Cruz, L.-Q. Chen, U. Dahmen, and R. Ramesh, “ Controlling Self-Assembled Perovskite-Spinel Nanostructures,” Nano Lett., 6 [7] 1401 – 7 ( 2006 ).en_US
dc.identifier.citedreferenceS. RÍos, A. Ruediger, A. Q. Jiang, J. F. Scott, H. Lu, and Z. Chen, “ Orthorhombic Strontium Titanate in BaTiO 3 –SrTiO 3 Superlattices,” J. Phys. Cond. Matter, 15 [21] L305 – 9 ( 2003 ).en_US
dc.identifier.citedreferenceK. Johnston, X. Y. Huang, J. B. Neaton, and K. M. Rabe, “ First-Principles Study of Symmetry Lowering and Polarization in BaTiO 3 /SrTiO 3 Superlattices with in-Plane Expansion,” Phys. Rev. B, 71 [10] 100103(R) ( 2005 ).en_US
dc.identifier.citedreferenceY. L. Li, S. Y. Hu, D. Tenne, A. Soukiassian, D. G. Schlom, L. Q. Chen, X. X. Xi, K. J. Choi, C. B. Eom, A. Saxena, T. Lookman, and Q. X. Jia, “ Interfacial Coherency and Ferroelectricity of BaTiO 3 /SrTiO 3 Superlattice Films,” Appl. Phys. Lett., 91 [25] 252904 ( 2007 ).en_US
dc.identifier.citedreferenceY. L. Li, S. Y. Hu, D. Tenne, A. Soukiassian, D. G. Schlom, X. X. Xi, K. J. Choi, C. B. Eom, A. Saxena, T. Lookman, Q. X. Jia, and L. Q. Chen, “ Prediction of Ferroelectricity in BaTiO 3 /SrTiO 3 Superlattices with Domains,” Appl. Phys. Lett., 91 [11] 112914 ( 2007 ).en_US
dc.identifier.citedreferenceC. Ederer and N. A. Spaldin, “ Effect of Epitaxial Strain on the Spontaneous Polarization of Thin Film Ferroelectrics,” Phys. Rev. Lett., 95 [25] 257601 ( 2005 ).en_US
dc.identifier.citedreferenceK. M. Rabe, “ Theoretical Investigations of Epitaxial Strain Effects in Ferroelectric Oxide Thin Films and Superlattices,” Curr. Opin. Solid State Mater. Sci., 9 [3] 122 – 7 ( 2006 ).en_US
dc.identifier.citedreferenceC. Ederer and N. A. Spaldin, “ Recent Progress in First-Principles Studies of Magnetoelectric Multiferroics,” Curr. Opin. Solid State Mater. Sci., 9 [3] 128 – 39 ( 2006 ).en_US
dc.identifier.citedreferenceJ. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, “ First-Principles Study of Spontaneous Polarization in Multiferroic BiFeO 3,” Phys. Rev. B, 71 [1] 014113 ( 2005 ).en_US
dc.identifier.citedreferenceO. Dieguez, K. M. Rabe, and D. H. Vanderbilt, “ First-Principles Study of Epitaxial Strain in Perovskites,” Phys. Rev. B, 72 [14] 144101 ( 2005 ).en_US
dc.identifier.citedreferenceM. Dawber, K. M. Rabe, and J. F. Scott, “ Physics of Thin-Film Ferroelectric Oxides,” Rev. Mod. Phys., 77 [4] 1083 – 130 ( 2005 ).en_US
dc.identifier.citedreferenceH. W. Jang, S. H. Beak, D. Ortiz, C. M. Folkman, R. R. Das, Y. H. Chu, P. Shafer, J. X. Zhang, S. Choudhury, V. Vaithyanathan, Y. B. Chen, X. Q. Pan, D. G. Schlom, L. Q. Chen, R. Ramesh, and C. B. Eom, “ Strain-Induced Polarization Rotation in Epitaxial (001) BiFeO 3 Thin Films,” Phys. Rev. Lett., in press.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.