Show simple item record

New Development of the J -Based Fracture Testing Technique for Ceramic-Matrix Composites

dc.contributor.authorHashida, Toshiyukien_US
dc.contributor.authorLi, Victor C.en_US
dc.contributor.authorTakahashi, Hideakien_US
dc.date.accessioned2010-04-01T15:15:43Z
dc.date.available2010-04-01T15:15:43Z
dc.date.issued1994-06en_US
dc.identifier.citationHashida, Toshiyuki; Li, Victor C.; Takahashi, Hideaki (1994). "New Development of the J -Based Fracture Testing Technique for Ceramic-Matrix Composites." Journal of the American Ceramic Society 77(6): 1553-1561. <http://hdl.handle.net/2027.42/65733>en_US
dc.identifier.issn0002-7820en_US
dc.identifier.issn1551-2916en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65733
dc.format.extent1384457 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1994 by The American Ceramic Society, Inc.en_US
dc.titleNew Development of the J -Based Fracture Testing Technique for Ceramic-Matrix Compositesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumAdvanced Civil Engineering Materials Research Laboratory, Department of Civil and Environmental Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2125en_US
dc.contributor.affiliationotherResearch Institute for Fracture Technology, Tohoku University, Sendai, 980, Japanen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65733/1/j.1151-2916.1994.tb09756.x.pdf
dc.identifier.doi10.1111/j.1151-2916.1994.tb09756.xen_US
dc.identifier.sourceJournal of the American Ceramic Societyen_US
dc.identifier.citedreferenceP. F. Becher, T. N. Tiegs, J. C. Ogle, and W. H. Warwich, “ Toughening of Ceramics by Whisker Reinforcement ”; pp. 61 – 73 in Fracture Mechanics of Ceramics, Vol. 7, Composites. Impact, Statistics, and High-Temperature Phenomena. Edited by R. C. Bradt, D. P. H. Hasselman. A. G. Evans, and F. F. Lange Plenum Press, New York, 1986.en_US
dc.identifier.citedreferenceM. RÜhle, B. J. Dalgleish, and A. G. Evans, “ On the Toughening of Ceramics by Whhiskers,” Scr. Metall., 21, 681 – 86 ( 1987 ).en_US
dc.identifier.citedreferenceA. G. Evans, “ Perspective on the Development of High-Toughness Ceramics,” J. Am. Ceram. Soc., 73 [ 2 ] 187 – 206 ( 1990 ).en_US
dc.identifier.citedreferenceP. B. Becher, C. H. Hsueh, P. Angelini, and T. N. Tiegs, “ Toughening Behavior in Whisker-Reinforced Ceramic Matrix Composites.” J. Am. Ceram. Soc., 71 [ 12 ] 1050 – 61 ( 1988 ).en_US
dc.identifier.citedreferenceG. H. Campbell, M. RÜhle, B. J. Dalgleish, and A. G. Evans, “ Whisker Toughening: A Comparison Between Aluminum Oxide and Silicon Nitride Toughened with Silicon Carbide,” J. Am. Ceram. Soc., 73 [ 3 ] 521 – 30 ( 1990 ).en_US
dc.identifier.citedreferenceJ. Homeny, W. L. Vaughn, and M. K. Ferber, “ Silicon Carbide Whisker/Alumina Matrix Composites: Effect of Whisker Surface Treatment on Fracture Toughness.” J. Am. Ceram. Soc., 73 [ 2 ] 394 – 402 ( 1990 ).en_US
dc.identifier.citedreferenceG. I. Barenblatt, “ Mathematical Theory of Equilibrium of Cracks in Brittle Fracture ”; pp. 55 – 129 in Advunces in Applied Mechanics. VII. Academic Press, New York, 1962.en_US
dc.identifier.citedreferenceD. B. Marshall, B. N. Cox, and A. G. Evans, “ The Mechanics of Matrix Cracking in Brittle-Matrix Fiber Composites,” Acta Metall, 33 [ 11 ] 2013 – 21 ( 1985 ).en_US
dc.identifier.citedreferenceL. S. Sigl, P. A. Mataga, B. J. Daigleish, R. M. McMeeking, and A. G. Evans, “ On the Toughness of Brittle Materials Reinforced with a Ductile Phase,” Acta Metall., 36 [ 4 ] 945 – 53 ( 1988 ).en_US
dc.identifier.citedreferenceM. F. Ashby, F. J. Blunt, and M. Bannister, “ Flow Characterizations of Highly Constrained Metal Wire,” Acta Metall., 37 [ 7 ] 1847 – 57 ( 1989 ).en_US
dc.identifier.citedreferenceV. C. Li, “ Fracture Resistance Parameters for Cementitious Materials and Their Experimental Determination ”; pp. 431 – 49 in Application of Fracture Mechanics to Cementitious Composites. Edited by S. P. Shah Marinus Nijhoff Publishers, Dordrect, Netherlands, 1985.en_US
dc.identifier.citedreferenceV. C. Li, C. M. Chan, and C. K. Y. Leung, “ Experimental Determination of the Tension-Softening Curve in Cementitious Composites,” Cem. Concr. Res., 17 [ 3 ] 441 – 52 ( 1987 ).en_US
dc.identifier.citedreferenceC.-H. Hsueh and P. F. Becher, “ Evaluation of Bridging Stress from R -Curve Behavior for Nontransforming Ceramics,” J. Am. Ceram. Soc., 71 [ 5 ] C-234 – C-237 ( 1988 ).en_US
dc.identifier.citedreferenceX.-Z. Hu and Y.-W. Mai, “ General Method for Determination of Crack-Interface Bridging Stresses,” J. Mater. Sci., 27, 3502 – 10 ( 1992 ).en_US
dc.identifier.citedreferenceY.-W. Mai, “ Fracture and Fatigue of Non-Transformable Ceramics: The Role of Crack-Interface Bridging ”; pp. 3 – 26 in Fracture Processes in Concrete. Rock and Ceramics. Edited by J. G. M. van Mier, J. G. Rots, and A. Bakker & FN Spon, London, U.K., 1991.en_US
dc.identifier.citedreferenceP. L. Swanson, “ Tensile Fracture Resistance Mechanism in Brittle Poly-Crystals, An Ultrasonic and In Situ Microscopy Investigation,” J. Geophys. Res., 92, 8015 – 36 ( 1987 ).en_US
dc.identifier.citedreferenceS. Teramura, N. Nomura, T. Hashida, H. Takahashi, and H. Mihashi, “ Development of a Core-Based Testing Method for Determining Fracture Energy and Tension-Softening Relation of Concrete ”; pp. 463 – 73 in Micromechanics of Failure of Quasi-brittle Materials. Edited by S. P. Shah, S. E. Swartz, and M. L. Wang Elsevier Applied Science, London, U.K., 1990.en_US
dc.identifier.citedreferenceV. C. Li and R. Ward, “ A Novel Testing Technique for Post-peak Tensile Behavior of Cementitious Materials ”; pp. 183 – 95 in Fracture Toughness and Fracture Energy, Test Method for Concrete and Rock. Edited by H. Mihashi, H. Takahashi, and F. H. Wittman, A. A. Balkema, Rotterdam, Netherlands, 1989.en_US
dc.identifier.citedreferenceC. K. Y. Leung and V. C. Li, “ Determination of Fracture Toughness Parameter of Quasi-Brittle Materials with Laboratory-Size Specimens,” J. Mater. Sci., 24, 854 – 62 ( 1989 ).en_US
dc.identifier.citedreferenceK. Rokugo, M. Iwasa, S. Seko, and W. Koyanagi, “ Tension-Softening Diagrams of Steel Fiber Reinforced Concrete ”; pp. 513 – 22 in Fracture of Concrete and Rock, Recent Developments. Edited by S. P. Shah, S. E. Swartz, and B. Barr Elsevier Applied Science Publishers, London, U.K., 1989.en_US
dc.identifier.citedreferenceT. Hashida, “ Tension-softening Curve Measurements for Fracture Toughness Determination in Granite ”; pp. 47 – 55 in Fracture Toughness and Fracture Energy. Test Method for Concrete and Rock. Edited by H. Mihashi, H. Takahashi, and F. H. Wittman, A. A. Balkema, Rotterdam, Netherlands, 1989.en_US
dc.identifier.citedreferenceT. Hashida, “ Evaluation of Fracture Processes in Granite Based on the Tension-Softening Model ”; pp. 233 – 43 in Micromechanics of Failure of Quasibrittle Materials. Edited by S. P. Shah, S. E. Swartz, and M. L. Wang Elsevier Applied Science, London, U.K., 1990.en_US
dc.identifier.citedreferenceK. P. Chong, V. C. Li, and H. H. Einstein, “ Size Effects, Process Zone, and Tension Softening Behavior in Fracture of Geomaterials,” Eng. Fract. Mech., 34 [ 3 ] 669 – 78 ( 1989 ).en_US
dc.identifier.citedreferenceA. Hillerborg ; personal communications, 1985.en_US
dc.identifier.citedreferenceO. Reyes, “ Boundary Element Analysis of Non-linear Elastic Fracture Mechanics Problems ”; Master's Thesis. Massachusetts Institute of Technology, Cambridge, MA, 1987.en_US
dc.identifier.citedreferenceJ. R. Rice, “ A Path Independent Integral and the Approximate Analysis of Strain Concentrations by Notches and Cracks,” J. Appl. Mech., 35, 379 – 86 ( 1968 ).en_US
dc.identifier.citedreferenceV. C. Li, “ Post-Crack Scaling Relations for Fiber Reinforced Cementitious Composites,” J. Mater. Civ. Eng., 4 [ 1 ] 41 – 57 ( 1992 ).en_US
dc.identifier.citedreferenceS. Okuda, “ Fracture Toughness Evaluation of Ceramics and Foam Glass Composites by Means of Tension-Softening Relation” (in Jpn.) ; Master's Thesis. Tohoku University, Sendai, Japan, 1991.en_US
dc.identifier.citedreferenceT. Hashida and H. Takahashi, “ Simple Determination of the Effective Young's Modulus of Rock by the Compliance Method,” J. Test. Eval., 13 [ 1 ] 77 – 84 ( 1985 ).en_US
dc.identifier.citedreferenceD. J. Green, “ Fabrication and Mechanical Properties of Lightweight Ceramics Produced by Sintering of Hollow Spheres,” J. Am. Ceram. Soc., 68 [ 7 ] 403 – 409 ( 1985 ).en_US
dc.identifier.citedreferenceJ. C. Newman, Jr., “ Stress Analysis of the Compact Specimen Including the Effects of Pin Loading ”; pp. 105 – 21 in Fracture Analysis, ASTM STP 560. American Society for Testing and Materials, Philadelphia, PA, 1974.en_US
dc.identifier.citedreferenceC. F. Shih, H. G. Dolorenzi, and W. R. Andrews, “ Elastic Compliances and Stress Intensity Factors for Side Grooved Specimens.” Int. J. Fract., 13, 544 – 48 ( 1977 ).en_US
dc.identifier.citedreferenceA. Hillerborg, “ Analysis of a Single Crack ”; pp. 223 – 49 in Fracture Mechanics of Concrete. Edited by F. H. Wittman. Elsevier, Amsterdam, Netherlands, 1983.en_US
dc.identifier.citedreferenceL. M. Barker, “ A Simplified Method for Measuring Plane Strain Fracture Toughness,” Eng. Fract. Mech., 9, 361 – 69 ( 1977 ).en_US
dc.identifier.citedreference35 International Society for Rock Mechanics (F. Ouchterlony, Working Group Coordinator), “ Suggested Methods for Determining the Fracture Toughness of Rock,” Int. J. Rack. Mech. Min. Sci., 25, 71 – 96 ( 1988 ).en_US
dc.identifier.citedreferenceH. Kodama, T. Suzuki, H. Sakamoto, and T. Miyoshi, “ Toughening of Silicon Nitride Matrix Composites by the Addition of Both Silicon Carbide Whiskers and Silicon Carbide Particles,” J. Am. Ceram. Soc., 73 [ 3 ] 678 – 83 ( 1990 ).en_US
dc.identifier.citedreferenceF. Zok, O. Sbaizero, C. L. Hom, and A. G. Evans, “ Mode I Fracture Resistance of a Laminated Fiber-Reinforced Ceramic,” J. Am. Ceram. Soc., 74 [ 1 ] 187 – 93 ( 1991 ).en_US
dc.identifier.citedreferenceT. Miyajima and M. Sakai, “ Fracture Toughness for First Matrix Cracking of a Unidirectionally Reinforced Carbon/Carbon Composite Material,” J. Mater. Res., 6 [ 1 ] 2312 – 17 ( 1991 ).en_US
dc.identifier.citedreferenceR. Knehans and R. Steinbrech, “ Memory Effect of Crack Resistance During Slow Crack Growth in Notched Al 2 O 3 Bend Specimens,” J. Mater. Sci. Lett., 1, 327 – 29 ( 1982 ).en_US
dc.identifier.citedreferenceM. V. Swain, “ R- Curve Behavior in a Polycrystalline Alumina Material,” J. Mater. Sci. Lett., 5, 1313 – 15 ( 1986 ).en_US
dc.identifier.citedreferenceP. L. Swanson, C. J. Fairbanks, B. R. Lawn, Y. W. Mai, and B. J. Hockey, “ Crack-Interaction Grain Bridging as a Fracture Resistance Mechanism in Ceramics: I. Experimental Study on Alumina,” J. Am. Ceram. Soc., 70 [ 4 ] 279 – 89 ( 1987 ).en_US
dc.identifier.citedreferenceJ. RÖdel, J. F. Kelly, and B. R. Lawn, “ In Situ Measurements of Bridged Crack Interfaces in the Scanning Electron Microscope,” J. Am. Ceram. Soc., 73 [ 11 ] 3313 – 18 ( 1990 ).en_US
dc.identifier.citedreferenceR. W. Steinbrech, A. Reich, and W. SchaanvÄchter, “ R -Curve Behavior of Long Cracks in Alumina,” J. Am. Ceram. Soc., 73 [ 7 ] 2009 – 15 ( 1990 ).en_US
dc.identifier.citedreferenceM. Sakai, J. Yoshimura, Y. Goto, and M. Inagaki, “ R -Curve Behavior of a Polycrystalline Graphite: Microcracking and Grain Bridging in the Wake Region,” J. Am. Ceram. Soc., 71 [ 8 ] 609 – 16 ( 1988 ).en_US
dc.identifier.citedreferenceV. C. Li and E. Liang, “ Fracture Processes in Concrete and Fibre-Reinforced Cementitious Composites,” ASCE J. Eng. Mech. Div., 122 [ 6 ] 566 – 86 ( 1986 ).en_US
dc.identifier.citedreferenceF. Zok and C. L. Hom, “ Large Scale Bridging in Brittle Matrix Composites,” Acta Metall. Mater., 38 [ 10 ] 1895 – 904 ( 1990 ).en_US
dc.identifier.citedreferenceJ. L. Lorca and M. Elices, “ Fracture Resistance of Fiber-Reinforced Ceramic Matrix Composites,” Acta Metall. Mater., 38 [ 12 ] 2485 – 92 ( 1990 ).en_US
dc.identifier.citedreferenceM. D. Thouless and A. G. Evans, “ Effects of Pull-Out on the Mechanical Properties of Ceramic-Matrix Composite,” Acta Metall., 36 [ 3 ] 517 – 22 ( 1988 ).en_US
dc.identifier.citedreferenceV. C. Li and C. K. Y. Leung, “ Theory of Steady State and Multiple Cracking of Random Discontinuous Fiber Reinforced Brittle Matrix Composite,” ASCE J. Eng. Mech. Div., in press.en_US
dc.identifier.orcid0000-0002-8678-3493en_US
dc.identifier.name-orcidLi, Victor C.; 0000-0002-8678-3493en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.