Meta-Analysis of Studies with Missing Data
dc.contributor.author | Yuan, Ying | en_US |
dc.contributor.author | Little, Roderick J. A. | en_US |
dc.date.accessioned | 2010-04-01T15:49:59Z | |
dc.date.available | 2010-04-01T15:49:59Z | |
dc.date.issued | 2009-06 | en_US |
dc.identifier.citation | Yuan, Ying; Little, Roderick J. A. (2009). "Meta-Analysis of Studies with Missing Data." Biometrics 65(2): 487-496. <http://hdl.handle.net/2027.42/66327> | en_US |
dc.identifier.issn | 0006-341X | en_US |
dc.identifier.issn | 1541-0420 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/66327 | |
dc.identifier.uri | http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18565168&dopt=citation | en_US |
dc.description.abstract | Consider a meta-analysis of studies with varying proportions of patient-level missing data, and assume that each primary study has made certain missing data adjustments so that the reported estimates of treatment effect size and variance are valid. These estimates of treatment effects can be combined across studies by standard meta-analytic methods, employing a random-effects model to account for heterogeneity across studies. However, we note that a meta-analysis based on the standard random-effects model will lead to biased estimates when the attrition rates of primary studies depend on the size of the underlying study-level treatment effect. Perhaps ignorable within each study, these types of missing data are in fact not ignorable in a meta-analysis. We propose three methods to correct the bias resulting from such missing data in a meta-analysis: reweighting the DerSimonian–Laird estimate by the completion rate; incorporating the completion rate into a Bayesian random-effects model; and inference based on a Bayesian shared-parameter model that includes the completion rate. We illustrate these methods through a meta-analysis of 16 published randomized trials that examined combined pharmacotherapy and psychological treatment for depression. | en_US |
dc.format.extent | 286001 bytes | |
dc.format.extent | 3110 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Publishing Inc | en_US |
dc.rights | ©2009 International Biometric Society | en_US |
dc.subject.other | Bias | en_US |
dc.subject.other | Nonignorable Missing Data | en_US |
dc.subject.other | Patient-level Missing Data | en_US |
dc.subject.other | Random-effects Model | en_US |
dc.title | Meta-Analysis of Studies with Missing Data | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Mathematics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A. | en_US |
dc.contributor.affiliationother | Department of Biostatistics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, U.S.A. | en_US |
dc.identifier.pmid | 18565168 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/66327/1/j.1541-0420.2008.01068.x.pdf | |
dc.identifier.doi | 10.1111/j.1541-0420.2008.01068.x | en_US |
dc.identifier.source | Biometrics | en_US |
dc.identifier.citedreference | Albert, J. and Chib, S. ( 1993 ). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association 88, 669 – 679. | en_US |
dc.identifier.citedreference | Albert, P. S. and Follmann, D. ( 2000 ). Modeling repeated count data subject to informative dropout. Biometrics 56, 667 – 677. | en_US |
dc.identifier.citedreference | Altman, D. G. ( 2000 ). Statistics in medical journals: Some recent trends. Statistics in Medicine 19, 3275 – 3289. | en_US |
dc.identifier.citedreference | Arends, L. R., Hoes, A. W., Lubsen, J., Grobbee, D. E., and Stijnen, T. ( 2000 ). Baseline risk as predictor of treatment benefit: Three clinical meta-re-analyses. Statistics in Medicine 19, 3497 – 3518. | en_US |
dc.identifier.citedreference | Bailey, K. R. ( 1987 ). Inter-study differences—how should they influence the interpretation and analysis of results. Statistics in Medicine 6, 351 – 360. | en_US |
dc.identifier.citedreference | Baker, R. and Jackson, D. ( 2006 ). Using journal impact factors to correct for the publication bias of medical studies. Biometrics 62, 785 – 792. | en_US |
dc.identifier.citedreference | Biggerstaff, B. J. and Tweedie, R. L. ( 1997 ). Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis. Statistics in Medicine 16, 753 – 768. | en_US |
dc.identifier.citedreference | Brand, R. and Kragt, H. ( 1992 ). Importance of trends in the interpretation of an overall odds ratio in the meta-analysis of clinical trials. Statistics in Medicine 11, 2077 – 2082. | en_US |
dc.identifier.citedreference | Bushman, B. J. and Wang, M. C. ( 1995 ). A procedure for combining sample correlation coefficients and vote counts to obtain an estimate and confidence interval for the population correlation coefficient. Psychological Bulletin 117, 530 – 546. | en_US |
dc.identifier.citedreference | Bushman, B. J. and Wang, M. C. ( 1996 ). A procedure for combining sample standardized mean differences and vote counts to estimate the population standardized mean difference in fixed effect models. Psychological Method 1, 66 – 80. | en_US |
dc.identifier.citedreference | Cochran, W. G. ( 1937 ). Problem arising in the analysis of a series of similar experiments. Journal of the Royal Statistical Society Supplement 4 ( 1 ), 102 – 118. | en_US |
dc.identifier.citedreference | Copas, J. ( 1999 ). What works?: Selectivity models and meta-analysis. Journal of the Royal Statistical Society, Series A 162, 95 – 109. | en_US |
dc.identifier.citedreference | Dear, K. B. G. and Begg, C. B. ( 1992 ). An approach for assessing publication bias prior to performing a meta-analysis. Statistical Science 7, 237 – 245. | en_US |
dc.identifier.citedreference | De Gruttola, V. and Tu, X. M. ( 1994 ). Modelling progression of CD4 lymphocyte count and its relationship to survival time. Biometrics 50, 1003 – 1014. | en_US |
dc.identifier.citedreference | DerSimonian, R and Laird, N. ( 1986 ). Meta-analysis in clinical trials. Controlled Clinical Trials 7, 177 – 188. | en_US |
dc.identifier.citedreference | Duval, S. and Tweedie, R. ( 2000 ). A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. Journal of the American Statistical Association 95, 89 – 98. | en_US |
dc.identifier.citedreference | Follmann, D. and Wu, M. C. ( 1995 ). An approximate generalized linear model with random effects for informative missing data. Biometrics 51, 151 – 168. | en_US |
dc.identifier.citedreference | Fleiss, J. L. ( 1993 ). The statistical basis of meta-analysis. Statistical Methods in Medical Research 2, 121 – 145. | en_US |
dc.identifier.citedreference | Gelfand, A. E., Hills, S. E., Racine-Poon, A., and Smith, A. F. M. ( 1990 ). Illustration of Bayesian inference in normal data models using Gibbs' sampling. Journal of the American Statistical Association 85, 972 – 985. | en_US |
dc.identifier.citedreference | Gelman, A. ( 2006 ). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 1, 515 – 533. | en_US |
dc.identifier.citedreference | Gelman, A., Meng, X., and Stern, H. ( 1996 ). Posterior predictive assessment of model fitness via realized discrepancies (with discussion). Statistica Sinica 6, 733 – 807. | en_US |
dc.identifier.citedreference | Hardy, R. J. and Thompson, S. G. ( 1996 ). A likelihood approach to meta-analysis with random effects. Statistics in Medicine 15, 619 – 629. | en_US |
dc.identifier.citedreference | Hedges, L. V. ( 1981 ). Distribution theory for Glass's estimator of effect size and related estimators. Journal of Education Statistics 6, 107 – 128. | en_US |
dc.identifier.citedreference | Hedges, L. V. ( 1992 ). Modeling publication selection effects in meta-analysis. Statistical Science 7, 237 – 245. | en_US |
dc.identifier.citedreference | Henmi, M., Copas, J., and Eguchi, S. ( 2007 ). Confidence intervals and p-values for meta-analysis with publication bias. Biometrics 63, 475 – 482. | en_US |
dc.identifier.citedreference | Little, R. J. A. and Rubin, D. B. ( 2002 ). Statistical Analysis with Missing Data, 2nd edition. New York : John Wiley & Sons. | en_US |
dc.identifier.citedreference | Louis, T. A. and Zelterman, D. ( 1994 ). Bayesian approaches to research synthesis. In The Handbook of Research Synthesis, H. Cooper and L. V. Hedges ( eds ), 411 – 422. New York : Russell Sage Foundation. | en_US |
dc.identifier.citedreference | McIntosh, M. W. ( 1996 ). The population risk as an explanatory variable in research syntheses of clinical trials. Statistics in Medicine 15, 1713 – 1728. | en_US |
dc.identifier.citedreference | Mosteller, F. and Colditz, G. A. ( 1996 ). Understanding research synthesis (meta-analysis). Annual Review of Public Health 61, 714 – 719. | en_US |
dc.identifier.citedreference | Pampallona, S., Bollini, P., Tibaldi, G., Kupelnick, B., and Munizza, C. ( 2004 ). Combined pharmacotherapy and psychological treatment for depression. Archives of General Psychiatry 61, 714 – 719. | en_US |
dc.identifier.citedreference | Pigott, T. D. ( 1994 ). Methods for handling missing data in research synthesis. In The Handbook of Research Synthesis, H. Cooper and L. V. Hedges ( eds ), 163 – 176. New York : Russell Sage Foundation. | en_US |
dc.identifier.citedreference | Rosenthal, R. ( 1978 ). Combining the results to independent studies. Professional Psychology 17, 136 – 137. | en_US |
dc.identifier.citedreference | Rosenthal, R. ( 1979 ). The file drawer problem and tolerance for null results. Psychological Bulletin 86, 638 – 641. | en_US |
dc.identifier.citedreference | Rothstein, H., Sutton, A. J., and Borenstein, M. ( 2005 ). Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments. New York : John Wiley & Sons. | en_US |
dc.identifier.citedreference | Rotnitzky, A., Robins, J. M., and Scharfstein, D. O. ( 1998 ). Semiparametric regression for repeated outcomes with non-ignorable non-response. Journal of the American Statistical Association 93, 1321 – 1339. | en_US |
dc.identifier.citedreference | Rotnitzky, A., Scharfstein, D., Su, T. L., and Robins, J. ( 2001 ). Methods for conducting sensitivity analysis of trials with potentially nonignorable competing causes of censoring. Biometrics 57, 103 – 113. | en_US |
dc.identifier.citedreference | Rubin, D. B. ( 1976 ). Inference and missing data (with discussion). Biometrika 63, 581 – 592. | en_US |
dc.identifier.citedreference | Shadish, W. R. and Haddock, C. K. ( 1994 ). Combining estimates of effect size. In The Handbook of Research Synthesis, H. Cooper and L. V. Hedges ( eds ), 261 – 281. New York : Russell Sage Foundation. | en_US |
dc.identifier.citedreference | Sterling, T. D. ( 1959 ). Publication decisions and their possible effects on inferences drawn test of significance—or vice versa. Journal of American Statistical Association 54, 30 – 34. | en_US |
dc.identifier.citedreference | Sutton, A. J., Abrams, K. R., Jones, D. R., Sheldon, T. A., and Song, F. ( 2000 ). Methods for Meta-Analysis in Medical Research. New York : John Wiley & Sons. | en_US |
dc.identifier.citedreference | Ten Have, T. R., Pulkstenis, E., Kunselman, A., and Landis, J. R. ( 1998 ). Mixed effects logistic regression models for longitudinal binary response data with informative dropout. Biometrics 54, 367 – 383. | en_US |
dc.identifier.citedreference | Walter, S. D. ( 1997 ). Variation in baseline risk as an explanation of heterogeneity in meta-analysis. Statistics in Medicine 16, 2883 – 2900. | en_US |
dc.identifier.citedreference | Wu, M. C. and Carroll, R. J. ( 1988 ). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 44, 175 – 188. | en_US |
dc.identifier.citedreference | Yuan, Y. and Little, R. J. A. ( 2007 ). Model-based estimates of the finite population mean for two-stage cluster samples with unit nonresponse. Applied Statistics 56, 79 – 97. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.