Show simple item record

Meta-Analysis of Studies with Missing Data

dc.contributor.authorYuan, Yingen_US
dc.contributor.authorLittle, Roderick J. A.en_US
dc.date.accessioned2010-04-01T15:49:59Z
dc.date.available2010-04-01T15:49:59Z
dc.date.issued2009-06en_US
dc.identifier.citationYuan, Ying; Little, Roderick J. A. (2009). "Meta-Analysis of Studies with Missing Data." Biometrics 65(2): 487-496. <http://hdl.handle.net/2027.42/66327>en_US
dc.identifier.issn0006-341Xen_US
dc.identifier.issn1541-0420en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66327
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18565168&dopt=citationen_US
dc.description.abstractConsider a meta-analysis of studies with varying proportions of patient-level missing data, and assume that each primary study has made certain missing data adjustments so that the reported estimates of treatment effect size and variance are valid. These estimates of treatment effects can be combined across studies by standard meta-analytic methods, employing a random-effects model to account for heterogeneity across studies. However, we note that a meta-analysis based on the standard random-effects model will lead to biased estimates when the attrition rates of primary studies depend on the size of the underlying study-level treatment effect. Perhaps ignorable within each study, these types of missing data are in fact not ignorable in a meta-analysis. We propose three methods to correct the bias resulting from such missing data in a meta-analysis: reweighting the DerSimonian–Laird estimate by the completion rate; incorporating the completion rate into a Bayesian random-effects model; and inference based on a Bayesian shared-parameter model that includes the completion rate. We illustrate these methods through a meta-analysis of 16 published randomized trials that examined combined pharmacotherapy and psychological treatment for depression.en_US
dc.format.extent286001 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights©2009 International Biometric Societyen_US
dc.subject.otherBiasen_US
dc.subject.otherNonignorable Missing Dataen_US
dc.subject.otherPatient-level Missing Dataen_US
dc.subject.otherRandom-effects Modelen_US
dc.titleMeta-Analysis of Studies with Missing Dataen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.en_US
dc.contributor.affiliationotherDepartment of Biostatistics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, U.S.A.en_US
dc.identifier.pmid18565168en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66327/1/j.1541-0420.2008.01068.x.pdf
dc.identifier.doi10.1111/j.1541-0420.2008.01068.xen_US
dc.identifier.sourceBiometricsen_US
dc.identifier.citedreferenceAlbert, J. and Chib, S. ( 1993 ). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association 88, 669 – 679.en_US
dc.identifier.citedreferenceAlbert, P. S. and Follmann, D. ( 2000 ). Modeling repeated count data subject to informative dropout. Biometrics 56, 667 – 677.en_US
dc.identifier.citedreferenceAltman, D. G. ( 2000 ). Statistics in medical journals: Some recent trends. Statistics in Medicine 19, 3275 – 3289.en_US
dc.identifier.citedreferenceArends, L. R., Hoes, A. W., Lubsen, J., Grobbee, D. E., and Stijnen, T. ( 2000 ). Baseline risk as predictor of treatment benefit: Three clinical meta-re-analyses. Statistics in Medicine 19, 3497 – 3518.en_US
dc.identifier.citedreferenceBailey, K. R. ( 1987 ). Inter-study differences—how should they influence the interpretation and analysis of results. Statistics in Medicine 6, 351 – 360.en_US
dc.identifier.citedreferenceBaker, R. and Jackson, D. ( 2006 ). Using journal impact factors to correct for the publication bias of medical studies. Biometrics 62, 785 – 792.en_US
dc.identifier.citedreferenceBiggerstaff, B. J. and Tweedie, R. L. ( 1997 ). Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis. Statistics in Medicine 16, 753 – 768.en_US
dc.identifier.citedreferenceBrand, R. and Kragt, H. ( 1992 ). Importance of trends in the interpretation of an overall odds ratio in the meta-analysis of clinical trials. Statistics in Medicine 11, 2077 – 2082.en_US
dc.identifier.citedreferenceBushman, B. J. and Wang, M. C. ( 1995 ). A procedure for combining sample correlation coefficients and vote counts to obtain an estimate and confidence interval for the population correlation coefficient. Psychological Bulletin 117, 530 – 546.en_US
dc.identifier.citedreferenceBushman, B. J. and Wang, M. C. ( 1996 ). A procedure for combining sample standardized mean differences and vote counts to estimate the population standardized mean difference in fixed effect models. Psychological Method 1, 66 – 80.en_US
dc.identifier.citedreferenceCochran, W. G. ( 1937 ). Problem arising in the analysis of a series of similar experiments. Journal of the Royal Statistical Society Supplement 4 ( 1 ), 102 – 118.en_US
dc.identifier.citedreferenceCopas, J. ( 1999 ). What works?: Selectivity models and meta-analysis. Journal of the Royal Statistical Society, Series A 162, 95 – 109.en_US
dc.identifier.citedreferenceDear, K. B. G. and Begg, C. B. ( 1992 ). An approach for assessing publication bias prior to performing a meta-analysis. Statistical Science 7, 237 – 245.en_US
dc.identifier.citedreferenceDe Gruttola, V. and Tu, X. M. ( 1994 ). Modelling progression of CD4 lymphocyte count and its relationship to survival time. Biometrics 50, 1003 – 1014.en_US
dc.identifier.citedreferenceDerSimonian, R and Laird, N. ( 1986 ). Meta-analysis in clinical trials. Controlled Clinical Trials 7, 177 – 188.en_US
dc.identifier.citedreferenceDuval, S. and Tweedie, R. ( 2000 ). A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. Journal of the American Statistical Association 95, 89 – 98.en_US
dc.identifier.citedreferenceFollmann, D. and Wu, M. C. ( 1995 ). An approximate generalized linear model with random effects for informative missing data. Biometrics 51, 151 – 168.en_US
dc.identifier.citedreferenceFleiss, J. L. ( 1993 ). The statistical basis of meta-analysis. Statistical Methods in Medical Research 2, 121 – 145.en_US
dc.identifier.citedreferenceGelfand, A. E., Hills, S. E., Racine-Poon, A., and Smith, A. F. M. ( 1990 ). Illustration of Bayesian inference in normal data models using Gibbs' sampling. Journal of the American Statistical Association 85, 972 – 985.en_US
dc.identifier.citedreferenceGelman, A. ( 2006 ). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 1, 515 – 533.en_US
dc.identifier.citedreferenceGelman, A., Meng, X., and Stern, H. ( 1996 ). Posterior predictive assessment of model fitness via realized discrepancies (with discussion). Statistica Sinica 6, 733 – 807.en_US
dc.identifier.citedreferenceHardy, R. J. and Thompson, S. G. ( 1996 ). A likelihood approach to meta-analysis with random effects. Statistics in Medicine 15, 619 – 629.en_US
dc.identifier.citedreferenceHedges, L. V. ( 1981 ). Distribution theory for Glass's estimator of effect size and related estimators. Journal of Education Statistics 6, 107 – 128.en_US
dc.identifier.citedreferenceHedges, L. V. ( 1992 ). Modeling publication selection effects in meta-analysis. Statistical Science 7, 237 – 245.en_US
dc.identifier.citedreferenceHenmi, M., Copas, J., and Eguchi, S. ( 2007 ). Confidence intervals and p-values for meta-analysis with publication bias. Biometrics 63, 475 – 482.en_US
dc.identifier.citedreferenceLittle, R. J. A. and Rubin, D. B. ( 2002 ). Statistical Analysis with Missing Data, 2nd edition. New York : John Wiley & Sons.en_US
dc.identifier.citedreferenceLouis, T. A. and Zelterman, D. ( 1994 ). Bayesian approaches to research synthesis. In The Handbook of Research Synthesis, H. Cooper and L. V. Hedges ( eds ), 411 – 422. New York : Russell Sage Foundation.en_US
dc.identifier.citedreferenceMcIntosh, M. W. ( 1996 ). The population risk as an explanatory variable in research syntheses of clinical trials. Statistics in Medicine 15, 1713 – 1728.en_US
dc.identifier.citedreferenceMosteller, F. and Colditz, G. A. ( 1996 ). Understanding research synthesis (meta-analysis). Annual Review of Public Health 61, 714 – 719.en_US
dc.identifier.citedreferencePampallona, S., Bollini, P., Tibaldi, G., Kupelnick, B., and Munizza, C. ( 2004 ). Combined pharmacotherapy and psychological treatment for depression. Archives of General Psychiatry 61, 714 – 719.en_US
dc.identifier.citedreferencePigott, T. D. ( 1994 ). Methods for handling missing data in research synthesis. In The Handbook of Research Synthesis, H. Cooper and L. V. Hedges ( eds ), 163 – 176. New York : Russell Sage Foundation.en_US
dc.identifier.citedreferenceRosenthal, R. ( 1978 ). Combining the results to independent studies. Professional Psychology 17, 136 – 137.en_US
dc.identifier.citedreferenceRosenthal, R. ( 1979 ). The file drawer problem and tolerance for null results. Psychological Bulletin 86, 638 – 641.en_US
dc.identifier.citedreferenceRothstein, H., Sutton, A. J., and Borenstein, M. ( 2005 ). Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments. New York : John Wiley & Sons.en_US
dc.identifier.citedreferenceRotnitzky, A., Robins, J. M., and Scharfstein, D. O. ( 1998 ). Semiparametric regression for repeated outcomes with non-ignorable non-response. Journal of the American Statistical Association 93, 1321 – 1339.en_US
dc.identifier.citedreferenceRotnitzky, A., Scharfstein, D., Su, T. L., and Robins, J. ( 2001 ). Methods for conducting sensitivity analysis of trials with potentially nonignorable competing causes of censoring. Biometrics 57, 103 – 113.en_US
dc.identifier.citedreferenceRubin, D. B. ( 1976 ). Inference and missing data (with discussion). Biometrika 63, 581 – 592.en_US
dc.identifier.citedreferenceShadish, W. R. and Haddock, C. K. ( 1994 ). Combining estimates of effect size. In The Handbook of Research Synthesis, H. Cooper and L. V. Hedges ( eds ), 261 – 281. New York : Russell Sage Foundation.en_US
dc.identifier.citedreferenceSterling, T. D. ( 1959 ). Publication decisions and their possible effects on inferences drawn test of significance—or vice versa. Journal of American Statistical Association 54, 30 – 34.en_US
dc.identifier.citedreferenceSutton, A. J., Abrams, K. R., Jones, D. R., Sheldon, T. A., and Song, F. ( 2000 ). Methods for Meta-Analysis in Medical Research. New York : John Wiley & Sons.en_US
dc.identifier.citedreferenceTen Have, T. R., Pulkstenis, E., Kunselman, A., and Landis, J. R. ( 1998 ). Mixed effects logistic regression models for longitudinal binary response data with informative dropout. Biometrics 54, 367 – 383.en_US
dc.identifier.citedreferenceWalter, S. D. ( 1997 ). Variation in baseline risk as an explanation of heterogeneity in meta-analysis. Statistics in Medicine 16, 2883 – 2900.en_US
dc.identifier.citedreferenceWu, M. C. and Carroll, R. J. ( 1988 ). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 44, 175 – 188.en_US
dc.identifier.citedreferenceYuan, Y. and Little, R. J. A. ( 2007 ). Model-based estimates of the finite population mean for two-stage cluster samples with unit nonresponse. Applied Statistics 56, 79 – 97.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.