Show simple item record

Critical current density and resistivity of MgB2MgB2 films

dc.contributor.authorRowell, J. M.en_US
dc.contributor.authorXu, S. Y.en_US
dc.contributor.authorZeng, X. H.en_US
dc.contributor.authorPogrebnyakov, A. V.en_US
dc.contributor.authorLi, Qien_US
dc.contributor.authorXi, X. X.en_US
dc.contributor.authorRedwing, J. M.en_US
dc.contributor.authorTian, Weien_US
dc.contributor.authorPan, Xiaoqingen_US
dc.date.accessioned2010-05-06T20:32:22Z
dc.date.available2010-05-06T20:32:22Z
dc.date.issued2003-07-07en_US
dc.identifier.citationRowell, J. M.; Xu, S. Y.; Zeng, X. H.; Pogrebnyakov, A. V.; Li, Qi; Xi, X. X.; Redwing, J. M.; Tian, W.; Pan, Xiaoqing (2003). "Critical current density and resistivity of MgB2MgB2 films." Applied Physics Letters 83(1): 102-104. <http://hdl.handle.net/2027.42/69396>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69396
dc.description.abstractThe high resistivity of many bulk and film samples of MgB2MgB2 is most readily explained by the suggestion that only a fraction of the cross-sectional area of the samples is effectively carrying current. Hence, the supercurrent (Jc)(Jc) in such samples will be limited by the same area factor, arising for example from porosity or from insulating oxides present at the grain boundaries. We suggest that a correlation should exist, Jc∝1/Δρ300–50 K,Jc∝1/Δρ300–50K, where Δρ300–50 KΔρ300–50K is the change in the apparent resistivity from 300 to 50 K. We report measurements of ρ(T)ρ(T) and JcJc for a number of films made by hybrid physical-chemical vapor deposition which demonstrate this correlation, although the “reduced effective area” argument alone is not sufficient. We suggest that this argument can also apply to many polycrystalline bulk and wire samples of MgB2.MgB2. © 2003 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent126395 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleCritical current density and resistivity of MgB2MgB2 filmsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherDepartment of Chemical and Materials Engineering, Arizona State University, Tempe, Arizona 85287en_US
dc.contributor.affiliationotherDepartment of Physics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802en_US
dc.contributor.affiliationotherDepartment of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69396/2/APPLAB-83-1-102-1.pdf
dc.identifier.doi10.1063/1.1590734en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceY. Eltsev, K. Nakao, S. Lee, T. Masui, N. Chikumoto, S. Tajima, N. Koshizuka, and M. Murakami, Phys. Rev. B PRBMDO66, 180504(R) (2002).en_US
dc.identifier.citedreferenceY. Eltsev, S. Lee, K. Nakao, N. Chikumoto, S. Tajima, N. Koshizuka, and M. Murakami, Physica C PHYCE6378–381, 61 (2002).en_US
dc.identifier.citedreferenceP. C. Canfield, D. K. Finnemore, S. L. Bud’ko, J. E. Ostenson, G. Lapertot, C. E. Cunningham, and C. Petrovic, Phys. Rev. Lett. PRLTAO86, 2423 (2001).en_US
dc.identifier.citedreferenceA. V. Pogrebnyakov, J. M. Redwing, J. E. Jones, X. X. Xi, S. Y. Xu, A. Li, V. Vaithyanathan, and D. G. Schlom, Appl. Phys. Lett. APPLAB82, 4319 (2003).en_US
dc.identifier.citedreferenceN. Rogado, M. A. Hayward, K. A. Regan, Y. Wang, N. P. Ong, H. W. Zandbergen, J. M. Rowell, and R. J. Cava, J. Appl. Phys. JAPIAU91, 274 (2002).en_US
dc.identifier.citedreferenceP. A. Sharma, N. Hur, Y. Horibe, C. H. Chen, B. G. Kim, S. Guha, M. Z. Cieplak, and S.-W. Cheong, Phys. Rev. Lett. PRLTAO89, 167003 (2002).en_US
dc.identifier.citedreferenceW. Jo, J.-U. Huh, T. Ohnishi, A. F. Marshall, M. R. Beasley, and R. H. Hammond, Appl. Phys. Lett. APPLAB80, 3563 (2002).en_US
dc.identifier.citedreferenceJ. Rowell, Supercond. Sci. Technol. SUSTEF16, R17 (2003).en_US
dc.identifier.citedreferenceD. C. Larbalestier (private communications).en_US
dc.identifier.citedreferenceJ. Halbritter, M. R. Dietrich, H. Kupfer, B. Runtsch, and J. Wuhl, Z. Phys. B ZPCMDN71, 411 (1988).en_US
dc.identifier.citedreferenceX. H. Zeng, A. V. Pogrebnyakov, A. Kotcharov, J. E. Jones, X. X. Xi, E. M. Lysczek, J. M. Redwing, S. Y. Xu, Q. Li, J. Lettieri et al., Nat. Mater.NMAACR1, 35 (2002).en_US
dc.identifier.citedreferenceM. Putti, V. Braccini, E. Galleani, F. Napoli, I. Pallecchi, A. S. Siri, P. Manfrinetti, and A. Palenzona, Supercond. Sci. Technol. SUSTEF16, 188 (2003).en_US
dc.identifier.citedreferenceI. I. Mazin, O. K. Andersen, O. Jepsen, O. V. Dolgov, J. Kortus, A. A. Golubov, A. B. Kuzmenko, and D. van der Marel, Phys. Rev. Lett. PRLTAO89, 107002 (2002).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.