Show simple item record

Intermixing and lateral composition modulation in GaAs/GaSb short period superlattices

dc.contributor.authorDorin, C.en_US
dc.contributor.authorMirecki-Millunchick, Joannaen_US
dc.contributor.authorWauchope, C.en_US
dc.date.accessioned2010-05-06T20:35:39Z
dc.date.available2010-05-06T20:35:39Z
dc.date.issued2003-08-01en_US
dc.identifier.citationDorin, C.; Mirecki Millunchick, J.; Wauchope, C. (2003). "Intermixing and lateral composition modulation in GaAs/GaSb short period superlattices." Journal of Applied Physics 94(3): 1667-1675. <http://hdl.handle.net/2027.42/69432>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69432
dc.description.abstractLateral composition modulation on the group V sublattice has been investigated in GaAs/GaSb short period superlattices. The effect of As species and growth temperature on the appearance of lateral composition modulation was studied. Cross-sectional transmission electron microscopy and x-ray diffraction reciprocal space maps reveal that structures grown using As tetramers are always disordered, defective, and phase separated. Also, in these structures the As-rich regions appear to be composed of stacked GaAs quantum dots embedded in a GaSb matrix. The structures grown with As dimers show improved crystalline quality. Short period superlattices grown at T<420 °CT<420 °C have flat interfaces and are laterally homogeneous, however, there is significant anion intermixing across the interfaces. Structures deposited at 420 °C<T<445 °C420 °C<T<445 °C roughen during growth, and exhibit lateral composition modulation and anion intermixing. Growing at higher temperatures destroys both the superlattice structure and the lateral composition modulation. The As sticking coefficient was calculated and was found to range between 0.1⩽σ⩽0.170.1⩽σ⩽0.17 depending on the growth temperature and As species. © 2003 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent1153862 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleIntermixing and lateral composition modulation in GaAs/GaSb short period superlatticesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.contributor.affiliationumElectron Microbeam Analysis Laboratory, University of Michigan, Ann Arbor, Michigan 48109-2143en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69432/2/JAPIAU-94-3-1667-1.pdf
dc.identifier.doi10.1063/1.1591419en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceF. Fuchs, U. Weimer, W. Pletschen, J. Schmitz, E. Ahlswede, M. Walther, and J. Wagner, Appl. Phys. Lett. APPLAB71, 3251 (1997).en_US
dc.identifier.citedreferenceC. R. Bolognesi, E. J. Caine, and H. Kroemer, IEEE Electron Device Lett. EDLEDZ15, 16 (1994).en_US
dc.identifier.citedreferenceJ. F. Klem, O. Blum, S. R. Kurtz, I. J. Fritz, and K. D. Choquette, J. Vac. Sci. Technol. B JVTBD918, 1605 (2000).en_US
dc.identifier.citedreferenceC. R. Bolognesi, Compound Semicond. COSEFP6, 94 (2000).en_US
dc.identifier.citedreferenceS. L. Zuo, Y. G. Hong, E. T. Yu, and J. F. Klem, J. Appl. Phys. JAPIAU92, 3761 (2002).en_US
dc.identifier.citedreferenceY.-H. Zhang, J. Cryst. Growth JCRGAE150, 838 (1995).en_US
dc.identifier.citedreferenceB. R. Bennett, B. V. Shanabrook, and M. E. Twigg, J. Appl. Phys. JAPIAU85, 2157 (1999).en_US
dc.identifier.citedreferenceR. Kaspi and K. R. Evans, J. Cryst. Growth JCRGAE175/176, 838 (1997).en_US
dc.identifier.citedreferenceK. Y. Cheng, K. C. Hsieh, and J. N. Baillargeon, Appl. Phys. Lett. APPLAB60, 2892 (1992)en_US
dc.identifier.citedreferenceA. G. Norman, S. P. Ahrenkiel, H. Moutinho, M. M. Al-Jassim, A. Mascarenhas, J. Mirecki Millunchick, S. R. Lee, R. D. Twesten, D. M. Follstaedt, J. L Reno, and E. D. Jones, Appl. Phys. Lett. APPLAB73, 1844 (1998).en_US
dc.identifier.citedreferenceK. C. Hsieh, J. N. Baillargeon, and K. Y. Cheng, Appl. Phys. Lett. APPLAB57, 2244 (1990).en_US
dc.identifier.citedreferenceR. D. Twesten, D. M. Follstaedt, S. R. Lee, E. D. Jones, J. L. Reno, J. Mirecki Millunchick, A. G. Norman, S. P. Ahrenkiel, and A. Mascarenhas, Phys. Rev. B PRBMDO60, 13619 (1999).en_US
dc.identifier.citedreferenceC. Dorin, J. Mirecki Millunchick, and C. Wauchope, Appl. Phys. Lett. APPLAB81, 3368 (2002).en_US
dc.identifier.citedreferenceD. W. Stokes, R. L. Forrest, J. H. Li, S. C. Moss, B. Z. Nosho, B. R. Bennett, L. J. Whitman, and M. Goldenberg, J. Appl. Phys. JAPIAU93, 311 (2003).en_US
dc.identifier.citedreferenceH. Bracht, S. P. Nicols, W. Walukiewicz, J. P. Silveira, F. Briones, and E. E. Haller, Nature (London) NATUAS408, 69 (2000).en_US
dc.identifier.citedreferenceM. J. Cherng, H. R. Jen, C. A. Larsen, G. B. Stringfellow, H. Lundt, and P. C. Taylor, J. Cryst. Growth JCRGAE77, 408 (1986).en_US
dc.identifier.citedreferenceP. F. Fewster, Crit. Rev. Solid State Mater. Sci. CCRSDA22, 69 (1997).en_US
dc.identifier.citedreferenceE. Selvig, B. O. Fimland, T. Skauli, and R. Haakenaasen, J. Cryst. Growth JCRGAE227-228, 562 (2001).en_US
dc.identifier.citedreferenceK. J. Kiely, Philos. Mag. A PMAADG60, 321 (1989).en_US
dc.identifier.citedreferenceE. S. Tok T. S. Jones, J. H. Neave, J. Zhang, and B. A. Joyce, Appl. Phys. Lett. APPLAB71, 3278 (1997).en_US
dc.identifier.citedreferenceT. Brown, A. Brown, and G. May, J. Vac. Sci. Technol. B JVTBD920, 1771 (2002).en_US
dc.identifier.citedreferenceR. Kaspi, J. Cryst. Growth JCRGAE201/202, 864 (1999).en_US
dc.identifier.citedreferenceM. W. Wang, D. A. Collins, T. C. McGill, and R. W. Grant, J. Vac. Sci. Technol. B JVTBD911, 1418 (1993).en_US
dc.identifier.citedreferenceB. Z. Nosho, B. R. Bennett, L. J. Whitman, and M. Goldenberg, J. Vac. Sci. Technol. B JVTBD919, 1626 (2001).en_US
dc.identifier.citedreferenceB. Z. Nosho, B. R. Bennett, L. J. Whitman, and M. Goldenberg, Appl. Phys. Lett. APPLAB81, 4452 (2002).en_US
dc.identifier.citedreferenceC. Dorin and J. Mirecki Millunchick, J. Appl. Phys. JAPIAU91, 237 (2001).en_US
dc.identifier.citedreferenceA. G. Cullis, D. J. Norris, T. Walther, M. A. Migliorato, and M. Hopkinson, Phys. Rev. B PRBMDO66, 081305 (2002).en_US
dc.identifier.citedreferenceO. Dehaese, X. Wallart, and F. Mollot, Appl. Phys. Lett. APPLAB66, 52 (1995).en_US
dc.identifier.citedreferenceR. Magri and A. Zunger, Phys. Rev. B PRBMDO65, 165302 (2002).en_US
dc.identifier.citedreferenceC. Dorin, J. Mirecki Millunchick, Y. Chen, B. G. Orr, and C. A. Pearson, Appl. Phys. Lett. APPLAB79, 4118 (2001).en_US
dc.identifier.citedreferenceL. E. Shilkrot, D. J. Srolovitz, and J. Tersoff, Phys. Rev. B PRBMDO62, 8397 (2000).en_US
dc.identifier.citedreferenceH. Asahi, K. Yamamoto, J. Hidaka, J. Satoh, and S. Gonda, J. Cryst. Growth JCRGAE179, 37 (1997).en_US
dc.identifier.citedreferenceJ. Steinshnider, J. Harper, M. Weimer, C. H. Lin, S. S. Pei, and D. H. Chow, Phys. Rev. Lett. PRLTAO85, 4562 (2000).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.