Show simple item record

Depth dependence of residual strains in polycrystalline Mo thin films using high‐resolution x‐ray diffraction

dc.contributor.authorMalhotra, S. G.en_US
dc.contributor.authorRek, Z. U.en_US
dc.contributor.authorYalisove, Steven M.en_US
dc.contributor.authorBilello, John C.en_US
dc.date.accessioned2010-05-06T20:49:38Z
dc.date.available2010-05-06T20:49:38Z
dc.date.issued1996-05-01en_US
dc.identifier.citationMalhotra, S. G.; Rek, Z. U.; Yalisove, S. M.; Bilello, J. C. (1996). "Depth dependence of residual strains in polycrystalline Mo thin films using high‐resolution x‐ray diffraction." Journal of Applied Physics 79(9): 6872-6879. <http://hdl.handle.net/2027.42/69584>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69584
dc.description.abstractThe magnitude of the stress in a thin film can be obtained by measuring the curvature of the film–substrate couple. Crystal curvature techniques yield the average stress throughout the film thickness. On a microscopic level, the details of the strain distribution, as a function of depth through the thickness of the film, can have important consequences in governing film quality and ultimate morphology. A new method, using high‐resolution x‐ray diffraction to determine the depth dependence of strain in polycrystalline thin films, is described. The technique requires an analysis of the diffraction peak shifts of at least six independent {hkl} scattering vectors, at a variety of penetration depths from the free surface of the film. The data are then used to determine the magnitude and directions of the strain eigenvalues in a laboratory reference frame for each penetration depth from the free surface of the film. A linear elastic model was used to determine the strains in successive slabs of the film. Results are reported for two Mo films, with nominal thicknesses of 50 and 100 nm, which were deposited by planar magnetron sputtering onto Si (100) substrates. This technique can provide quantitative insight into the depth variation of residual strains (stresses) in thin films and should work with a wide variety of materials. © 1996 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent151331 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleDepth dependence of residual strains in polycrystalline Mo thin films using high‐resolution x‐ray diffractionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109‐2136en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69584/2/JAPIAU-79-9-6872-1.pdf
dc.identifier.doi10.1063/1.361509en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceJ. A. Floro, C. V. Thompson, R. Carel, and P. D. Bristowe, J. Mater. Res. 9, 2411 (1994).en_US
dc.identifier.citedreferenceH. Windischmann, Crit. Rev. Solid State Mater. Sci. 17, 547 (1992).en_US
dc.identifier.citedreferenceW. D. Nix, Metall. Trans. A 20, 2217 (1989).en_US
dc.identifier.citedreferenceD. J. Morrison, J. W. Jones, G. S. Was, A. Mashayekhi, and D. W. Hoffman, in Thin Films: Stresses and Mechanical Properties, edited by John C. Bravman, William D. Nix, David M. Barnett, and David. A. Smith, Mater. Res. Symp. Proc., Vol. 130 (MRS, Pittsburgh, PA, 1989), p. 53.en_US
dc.identifier.citedreferenceP. A. Flinn, Mater. Res. Symp. Proc. 130, 41 (1989).en_US
dc.identifier.citedreferenceM. Renninger, Phys. Lett. 1, 104 (1962).en_US
dc.identifier.citedreferenceM. Renninger, Z. Phys. 19, 20 (1965).en_US
dc.identifier.citedreferenceM. Renninger, Z. Naturforsch. 160, 1110 (1961).en_US
dc.identifier.citedreferenceC. L. Kuo, P. E. Vanier, and J. C. Bilello, J. Appl. Phys. 55, 375 (1984).en_US
dc.identifier.citedreferenceJ. Tao, L. H. Lee, and J. C. Bilello, J. Electron. Mater. 20, 819 (1991).en_US
dc.identifier.citedreferenceG. G. Stoney, Proc. R. Soc. London Ser. A 82, 172 (1909).en_US
dc.identifier.citedreferenceD. W. Hoffman, Phys. Thin Films 3, 211 (1965).en_US
dc.identifier.citedreferenceC. S. Barrett and T. B. Massalski, Structure of Metals, 3rd ed. (McGraw- Hill, New York, 1966), pp. 466–485.en_US
dc.identifier.citedreferenceH. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures (Wiley, New York, 1974), pp. 755–790.en_US
dc.identifier.citedreferenceL. H. Schwartz and J. B. Cohen, Diffraction from Materials, 2nd ed. (Springer, New York, 1987), pp. 372–381.en_US
dc.identifier.citedreferenceM. R. James and J. B. Cohen, Treatise on Materials Science and Technology, edited by Herbert Herman (Academic, New York, 1980), Vol. 19A, pp. 2–62.en_US
dc.identifier.citedreferenceI. C. Noyan and J. B. Cohen, in Residual Stress and Stress Relaxation, edited by Eric Kula and Volker Weiss, Sagamore Army Materials Research Conference Proceedings (Plenum, New York, 1982), pp. 1–17.en_US
dc.identifier.citedreferenceH. Dölle and V. Hauk, Z. Metal. 68, 728 (1977).en_US
dc.identifier.citedreferenceI. C. Noyan and J. B. Cohen, Residual Stress Measurement by Diffraction and Interpretation (Springer, New York, 1987), pp. 117–163.en_US
dc.identifier.citedreferenceW. C. Marra, P. Eisenberger, and A. Y. Cho, J. Appl. Phys. 50, 6927 (1979).en_US
dc.identifier.citedreferenceP. Eisenberger and W. C. Marra, Phys. Rev. Lett. 46, 1081 (1981).en_US
dc.identifier.citedreferenceP. H. Fouss and S. Brennan, Ann. Rev. Mater. Sci. 20, 365 (1990).en_US
dc.identifier.citedreferenceL. J. Martinez-Miranda, J. J. Santiago-Aviles, W. R. Graham, P. A. Heiney, and M. P. Siegal, J. Mater. Res. 9, 1434 (1994).en_US
dc.identifier.citedreferenceR. Venkatraman, P. R. Besser, J. C. Bravman, and S. Brennan, J. Mater. Res. 9, 328 (1994).en_US
dc.identifier.citedreferenceP. R. Besser, S. Brennan, and J. C. Bravman, J. Mater. Res. 9, 13 (1994).en_US
dc.identifier.citedreferenceC. J. Shute and J. B. Cohen, J. Appl. Phys. 70, 2104 (1991).en_US
dc.identifier.citedreferenceT. Imura, S. Weissmann, and J. J. Slade, Jr., Acta. Crystallogr. 15, 786 (1962).en_US
dc.identifier.citedreferenceJ. A. Bain, L. J. Chyung, S. Brennan, and B. M. Clemens, Phys. Rev. B 44, 1184 (1991).en_US
dc.identifier.citedreferencePh. Goudeau, K. F. Badawi, A. Naudon, and G. Gladyszewski, Appl. Phys. Lett. 62, 246 (1993).en_US
dc.identifier.citedreferenceL. Maniguet, M. Ignat, M. Dupeux, P. A. Flinn, Ph. Normandon, P. Gergaud, and J. J. Bacmann, Advanced Metallization for ULSI Applications, edited by T. S. Cale and F. S. Pintchovski, Mater. Res. Soc. Symp. Proc., Vol. VIII (MRS, Pittsburgh, PA, 1992), p. 67.en_US
dc.identifier.citedreferenceM. Vill, D. P. Adams, S. M. Yalisove, and J. C. Bilello, Acta. Metall. mater. 43, 427 (1995).en_US
dc.identifier.citedreferenceC. Montcalm, B. T. Sullivan, H. Pepin, J. A. Dobrowolski, and M. Sutton, Appl. Opt. 33, 2057 (1994).en_US
dc.identifier.citedreferenceL. J. Parfitt (private communication).en_US
dc.identifier.citedreferenceH. Dosch, Phys. Rev. B 35, 2137 (1987).en_US
dc.identifier.citedreferenceJ. F. Nye, Physical Properties of Crystals (Oxford University Press, Oxford, 1985), pp. 41–43.en_US
dc.identifier.citedreferenceG. E. Deiter, Mechanical Metallurgy (McGraw-Hill, New York, 1961), p. 39.en_US
dc.identifier.citedreferenceO. P. Karpenko, J. C. Bilello, and S. M. Yalisove, J. Appl. Phys. 76, 4610 (1994).en_US
dc.identifier.citedreferenceD. P. Adams, L. J. Parfitt, J. C. Bilello, S. M. Yalisove, and Z. U. Rek, Thin Solid Films (to be published).en_US
dc.identifier.citedreferenceH. Dölle, J. Appl. Crystallogr. 12, 489 (1979).en_US
dc.identifier.citedreferenceI. C. Noyan, Metall. Trans. A 14, 249 (1983).en_US
dc.identifier.citedreferenceM. F. Doerner and S. Brennan, J. Appl. Phys. 63, 126 (1988).en_US
dc.identifier.citedreferenceR. M. Fisher, J. Z. Duan, and A. G. Fox, in Thin Films: Stresses and Mechanical Properties, edited by John C. Bravman, William D. Nix, David M. Barnett, and David A. Smith, Mater. Res. Soc. Symp. Proc., Vol. 130 (MRS, Pittsburgh, PA, 1989), p. 249.en_US
dc.identifier.citedreferenceR. W. Hoffman, Surf. Interface Anal. 3, 62 (1981).en_US
dc.identifier.citedreferenceT. J. Vink, M. A. J. Somers, J. L. C. Daams, and A. G. Dirks, J. Appl. Phys. 70, 4301 (1991).en_US
dc.identifier.citedreferenceR. A. Winholtz and J. B. Cohen, Aust. J. Phys. 41, 189 (1988).en_US
dc.identifier.citedreferenceM. R. James and J. B. Cohen, Advances in X-Ray Analysis (Plenum, New York, 1776), Vol. 20, pp. 291–305.en_US
dc.identifier.citedreferenceC. J. Kelly and M. A. Short, Advances in X-Ray Analysis (Plenum, New York, 1970), Vol. 14, pp. 377–388.en_US
dc.identifier.citedreferenceC. F. Jatczak and H. F. Boehm, Advances in X-Ray Analysis (Plenum, New York, 1973), Vol. 17, pp. 354–370.en_US
dc.identifier.citedreferenceH. Zantopulos and C. F. Jatczak, Advances in X-Ray Analysis (Plenum, New York, 1970), Vol. 14, pp. 360–376.en_US
dc.identifier.citedreferenceD. A. Witte, R. A. Winholtz, and S. P. Neal, Advances in X-Ray Analysis (Plenum, New York, 1994), Vol. 37, pp. 265–277.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.