Show simple item record

Effect of H on Si molecular‐beam epitaxy

dc.contributor.authorEaglesham, D. J.en_US
dc.contributor.authorUnterwald, F. C.en_US
dc.contributor.authorLuftman, H.en_US
dc.contributor.authorAdams, David P.en_US
dc.contributor.authorYalisove, Steven M.en_US
dc.date.accessioned2010-05-06T21:00:43Z
dc.date.available2010-05-06T21:00:43Z
dc.date.issued1993-12-01en_US
dc.identifier.citationEaglesham, D. J.; Unterwald, F. C.; Luftman, H.; Adams, D. P.; Yalisove, S. M. (1993). "Effect of H on Si molecular‐beam epitaxy." Journal of Applied Physics 74(11): 6615-6618. <http://hdl.handle.net/2027.42/69704>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69704
dc.description.abstractIn Si crystal growth by molecular‐beam epitaxy (MBE) at low temperatures there is known to be an epitaxial thickness: an initially crystalline regime before the deposited film becomes amorphous. The predominant impurity in MBE is hydrogen, but the role of background H in low‐temperature MBE has not previously been assessed. Here the effect of deliberate dosing of the Si surface with atomic H during low‐T growth is studied. The epitaxial thickness is shown to be sensitive to very small additional H fluxes (≊10−9 Torr, i.e., an increase in H only marginally above ambient). With further increases in dose rate, the epitaxial thickness decreases as hepi=h0−k(ln PH). Using secondary‐ion‐mass spectrometry data on the segregated H at the interface, we argue that breakdown in epitaxy is not caused directly by the surface concentration of adsorbed impurities. It is deduced that very small concentrations of H may influence the Si surface diffusion rate. The possible effect of background H adsorption on previous experiments on Si steps and surface diffusion is discussed.en_US
dc.format.extent3102 bytes
dc.format.extent602864 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEffect of H on Si molecular‐beam epitaxyen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109‐2136en_US
dc.contributor.affiliationotherAT&T Bell Labs, 600 Mountain Avenue, Murray Hill, New Jersey 07974en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69704/2/JAPIAU-74-11-6615-1.pdf
dc.identifier.doi10.1063/1.355101en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceD. J. Eaglesham, H.-J. Gossmann, and M. Cerullo, Phys. Rev. Lett. 65, 1127 (1990).en_US
dc.identifier.citedreferenceH.-J. Gossmann, E. F. Schubert, D. J. Eaglesham, and M. Cerullo, Appl. Phys. Lett. 57, 2440 (1990).en_US
dc.identifier.citedreferenceD. J. Eaglesham and M. Cerullo, Appl. Phys. Lett. 58, 2276 (1991).en_US
dc.identifier.citedreferenceD. J. Eaglesham.L. N. Pfeiffer, K. W. E. West, and D. R. Dykaar, Appl. Phys. Lett. 58, 65 (1991).en_US
dc.identifier.citedreferenceM. Kaminska, E. R. Weber, Z. Lilienthal-Weber, R. Leon, and Z. Rek, J. Vac. Sci. Technol. B 7, 710 (1989).en_US
dc.identifier.citedreferenceS. H. Wolff, S. Wagner, J. C. Bean, R. Hull, and J. M. Gibson, Appl. Phys. Lett. 55, 2017 (1989).en_US
dc.identifier.citedreferenceF. J. Grunthaner and P. J. Grunthaner, Mater. Sci. Rep. 1, 65 (1986).en_US
dc.identifier.citedreferenceD. J. Eaglesham.G. S. Higashi, and M. Cerullo, Appl. Phys. Lett. 59, 685 (1991); see alsoD. J. Eaglesham, F. C. Unterwald, and H. Luftman, Mater. Res. Soc. Symp. Proc. 259, 439 (1992).en_US
dc.identifier.citedreferenceJ. N. Smith and W. L. Fite, J. Chem. Phys. 37, 898 (1962).en_US
dc.identifier.citedreferenceJ. C. Feldman, P. J. Silverman, and I. Stensgaard, Nucl. Instrum. Methods 168, 589 (1980).en_US
dc.identifier.citedreferenceK. Sinniah, M. G. Sherman, L. B. Lewis, W. H. Weinberg, J. T. Yates, and K. Janda, J. Chem. Phys. 92, 5700 (1990).en_US
dc.identifier.citedreferenceSee C. Herring and N. M. Johnson, in Hydrogen in Semiconductors, edited by J. I. Pankove and N. M. Johnson (Academic, San Diego, CA, 1991), p. 276.en_US
dc.identifier.citedreferenceS. M. Gates, R. R. Kunz, and C. M. Greenlief, Surf. Sci. 207, 364 (1989).en_US
dc.identifier.citedreferenceD. J. Eaglesham and G. H. Gilmer, in Proceedings of the International Conference on Surface Disordering and Roughening, Les Houches, 1992, and D. J. Eaglesham (unpublished); see also D. D. Perovic, J.-P. Noel, D. C. Houghton, and G. C. Weatherly, in Proceedings of the 1st Topical Symposium on Si Based Heterostructures (AVS, Toronto, 1990).en_US
dc.identifier.citedreferenceD. J. Eaglesham (unpublished).en_US
dc.identifier.citedreferenceC. Roland and G. H. Gilmer, Phys. Rev. B 46, 13 428 (1992); 46, 13 437 (1992).en_US
dc.identifier.citedreferenceY. W. Mo, J. Kliener, M. B. Webb, and M. Lagally, Phys. Rev. Lett. 66, 1998 (1991).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.