Show simple item record

Holographic interferometry of a high‐energy‐density exploding lithium wire plasma

dc.contributor.authorRockett, Paul D.en_US
dc.contributor.authorBach, David Rudolphen_US
dc.date.accessioned2010-05-06T21:04:51Z
dc.date.available2010-05-06T21:04:51Z
dc.date.issued1979-04en_US
dc.identifier.citationRockett, Paul D.; Bach, David R. (1979). "Holographic interferometry of a high‐energy‐density exploding lithium wire plasma." Journal of Applied Physics 50(4): 2670-2674. <http://hdl.handle.net/2027.42/69746>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69746
dc.description.abstractSingle‐wavelength holographic interferometry was applied to the study of an exploding lithium wire plasma. The wire was 1 mil in diameter, extruded in vacuum. A holographic‐quality ruby‐laser probe produced a 16‐ns FWHM pulse at λ=694.3 nm with 45 mJ in the TEM00 mode. A temperature‐controlled resonant reflector restricted laser operation to essentially a single‐longitudinal mode. Linear charge density measured from Abel inverted interferograms implied that a significant amount of neutral or un‐ionized lithium was present in a cold core. Peak electron density reached 1.4×1019 e−/cm3 and 2<Te<10 eV, but significant neutral contribution prevented accurate electron density determination near the core. Three characteristic periods of plasma development were identified and compared to time‐resolved streak photographs of the luminous plasma front and optical spectra. Of special interest, a period of localized neutral ’’cloud’’ formation was observed with densities reaching 8×1017 cm−3, forming after self‐pinching and before peak discharge current.en_US
dc.format.extent3102 bytes
dc.format.extent684491 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleHolographic interferometry of a high‐energy‐density exploding lithium wire plasmaen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumThe University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69746/2/JAPIAU-50-4-2670-1.pdf
dc.identifier.doi10.1063/1.326224en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceExploding Wires, edited by W. G. Chase and H. K. Moore (Plenum, New York, 1968), Vol. 4.en_US
dc.identifier.citedreferenceD. Mosher, S. J. Stephanakis, I. M. Vitkovitsky, C. M. Dozier, L. S. Levine, and D. J. Nagel, Appl. Phys. Lett. 23, 429 (1973).en_US
dc.identifier.citedreferenceJ. C. DeBoo and D. R. Bach, J. Appl. Phys. 46, 2496 (1975).en_US
dc.identifier.citedreferenceP. D. Rockett and J. C. DeBoo, IEEE Conf. Rec. 2nd Int’l. Conf. on Plasma Science, 1975 (IEEE, New York, 1975), p. 120.en_US
dc.identifier.citedreferenceD. T. Attwood, L. W. Coleman, and D. W. Sweeny, Appl. Phys. Lett. 26, 616 (1975).en_US
dc.identifier.citedreferenceR. J. Radley, Jr., Phys. Fluids 18, 175 (1975).en_US
dc.identifier.citedreferenceJ. G. Kelly and L. P. Mix, J. Appl. Phys. 46, 1084 (1975).en_US
dc.identifier.citedreferenceR. A. Alpher and D. R. White, Phys. Fluids 2, 162 (1959).en_US
dc.identifier.citedreferenceA. J. Alcock and S. A. Ramsden, Appl. Phys. Lett. 8, 187 (1966).en_US
dc.identifier.citedreferenceR. A. Jeffries, Phys. Fluids 13, 210 (1970).en_US
dc.identifier.citedreferenceJ. L. Seftor, J. Appl. Phys. 45, 2903 (1974).en_US
dc.identifier.citedreferenceJ. L. Seftor, J. Appl. Phys. 44, 4965 (1973).en_US
dc.identifier.citedreferenceL. D. Siebert, Appl. Opt. 10, 632 (1971).en_US
dc.identifier.citedreferenceD. G. Steel (private communication).en_US
dc.identifier.citedreferenceE. Oktay and D. R. Bach, J. Appl. Phys. 41, 1716 (1970).en_US
dc.identifier.citedreferenceBorn and Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975).en_US
dc.identifier.citedreferenceHirschfelder, Curtiss, and Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).en_US
dc.identifier.citedreferenceW. Wiese, M. Smith, and B. Glennon, Atomic Transition Probabilities, Vol. 1, Hydrogen Through Neon, NSRDS‐NBS 4 (U.S. GPO, Washington, D.C. 1966).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.