Show simple item record

Particle rearrangements during transitions between local minima of the potential energy landscape of a binary Lennard-Jones liquid

dc.contributor.authorVogel, Michaelen_US
dc.contributor.authorDoliwa, Burkharden_US
dc.contributor.authorHeuer, Andreasen_US
dc.contributor.authorGlotzer, Sharon C.en_US
dc.date.accessioned2010-05-06T21:09:50Z
dc.date.available2010-05-06T21:09:50Z
dc.date.issued2004-03-01en_US
dc.identifier.citationVogel, Michael; Doliwa, Burkhard; Heuer, Andreas; Glotzer, Sharon C. (2004). "Particle rearrangements during transitions between local minima of the potential energy landscape of a binary Lennard-Jones liquid." The Journal of Chemical Physics 120(9): 4404-4414. <http://hdl.handle.net/2027.42/69796>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69796
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15268609&dopt=citationen_US
dc.description.abstractThe potential energy landscape (PEL) of binary Lennard-Jones (BLJ) mixtures exhibits local minima, or inherent structures (IS), which are organized into metabasins (MBs). We study the particle rearrangements related to transitions between both successive IS and successive MB for a small 80:20 BLJ system near the mode-coupling temperature TMCT.TMCT. The analysis includes the displacements of individual particles, the localization of the rearrangements, and the relevance of string-like motion. We find that the particle rearrangements during IS and MB transitions do not change significantly at TMCT.TMCT. In particular, an onset of single particle hopping on the length scale of the interparticle distance is not observed. Further, it is demonstrated that IS and MB dynamics are spatially heterogeneous and facilitated by string-like motion. To investigate the mechanism of string-like motion, we follow the particle rearrangements during suitable sequences of IS transitions. We find that most strings observed after a series of transitions do not move coherently during a single transition, but subunits of different sizes are active at different times. Several findings suggest that, though string-like motion is of comparable relevance when the system explores a MB and when it moves from one MB to another, the occurrence of a successful string enables the system to exit a MB. Moreover, we show that the particle rearrangements during two consecutive MB transitions are basically uncorrelated. In particular, different groups of particles are highly mobile. We further find the positions of strings during successive MB transitions weakly but positively correlated, supporting the idea of dynamic facilitation. Finally, the relation between the features of the potential energy landscape and the relaxation processes in supercooled liquids is discussed. © 2004 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent178670 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleParticle rearrangements during transitions between local minima of the potential energy landscape of a binary Lennard-Jones liquiden_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartments of Chemical Engineering and Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherMax Planck Institute for Polymer Research, Postfach 3148, 55021 Mainz, Germanyen_US
dc.contributor.affiliationotherInstitute of Physical Chemistry, University of Münster, Schlossplatz 4/7, 48149 Münster, Germanyen_US
dc.identifier.pmid15268609en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69796/2/JCPSA6-120-9-4404-1.pdf
dc.identifier.doi10.1063/1.1644538en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceM. Goldstein, J. Chem. Phys. JCPSA651, 3728 (1969).en_US
dc.identifier.citedreferenceC. A. Angell, Science SCIEAS267, 1924 (1995).en_US
dc.identifier.citedreferenceF. H. Stillinger, Science SCIEAS267, 1935 (1995).en_US
dc.identifier.citedreferenceP. G. Debenedetti and F. H. Stillinger, Nature (London) NATUAS410, 259 (2001).en_US
dc.identifier.citedreferenceF. H. Stillinger and T. A. Weber, Phys. Rev. A PLRAAN25, 978 (1982).en_US
dc.identifier.citedreferenceF. Sciortino, W. Kob, and P. Tartaglia, Phys. Rev. Lett. PRLTAO83, 3214 (1999).en_US
dc.identifier.citedreferenceS. Büchner and A. Heuer, Phys. Rev. E PLEEE860, 6507 (1999).en_US
dc.identifier.citedreferenceG. Adam and J. H. Gibbs, J. Chem. Phys. JCPSA643, 139 (1965).en_US
dc.identifier.citedreferenceS. Sastry, P. G. Debenedetti, and F. H. Stillinger, Nature (London) NATUAS393, 554 (1998).en_US
dc.identifier.citedreferenceA. Scala, F. W. Starr, E. La Nave, F. Sciortino, and H. E. Stanley, Nature (London) NATUAS406, 166 (2000).en_US
dc.identifier.citedreferenceS. Sastry, Nature (London) NATUAS409, 164 (2001).en_US
dc.identifier.citedreferenceI. Saika-Voivod, P. H. Poole, and F. Sciortino, Nature (London) NATUAS412, 514 (2001).en_US
dc.identifier.citedreferenceJ. D. Bryngelson, J. N. Onuchic, N. D. Onuchic, N. D. Socci, and P. G. Wolynes, Proteins 18PLAF21, 167 (1995).en_US
dc.identifier.citedreferenceD. J. Wales, J. P. K. Doye, M. A. Miller, P. N. Mortenson, and T. R. Walsh, Adv. Chem. Phys. ADCPAA115, 1 (2000).en_US
dc.identifier.citedreferenceT. B. Schrøder, S. Sastry, J. C. Dyre, and S. C. Glotzer, J. Chem. Phys. JCPSA6112, 9834 (2000).en_US
dc.identifier.citedreferenceW. Götze and L. Sjogren, Rep. Prog. Phys. RPPHAG55, 241 (1992).en_US
dc.identifier.citedreferenceC. Donati, J. F. Douglas, W. Kob, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys. Rev. Lett. PRLTAO80, 2338 (1998).en_US
dc.identifier.citedreferenceC. Donati, F. Sciortino, and P. Tartaglia, Phys. Rev. Lett. PRLTAO85, 1464 (2000).en_US
dc.identifier.citedreferenceK. Broderix, K. K. Bhattacharya, A. Cavagna, A. Zippeliu, and I. Giardina, Phys. Rev. Lett. PRLTAO85, 5360 (2000).en_US
dc.identifier.citedreferenceL. Angelani, R. Di Leonardo, G. Ruocco, A. Scala, and F. Sciortino, Phys. Rev. Lett. PRLTAO85, 5356 (2000).en_US
dc.identifier.citedreferenceE. La Nave, A. Scala, F. W. Starr, H. E. Staneley, and F. Sciortino, Phys. Rev. E PLEEE864, 036102 (2001).en_US
dc.identifier.citedreferenceE. La Nave, H. E. Stanley, and F. Sciortino, Phys. Rev. Lett. PRLTAO88, 035501 (2002).en_US
dc.identifier.citedreferenceJ. P. K. Doye and D. J. Wales, J. Chem. Phys. JCPSA6116, 3777 (2002).en_US
dc.identifier.citedreferenceB. Doliwa and A. Heuer, Phys. Rev. E PLEEE867, 031506 (2003).en_US
dc.identifier.citedreferenceB. Doliwa and A. Heuer, Phys. Rev. E PLEEE867, 030501 (2003).en_US
dc.identifier.citedreferenceR. Aldrin Denny, D. R. Reichman, and J. P. Bouchaud, Phys. Rev. Lett. PRLTAO90, 025503 (2003).en_US
dc.identifier.citedreferenceJ. Hernandez-Rojas and D. J. Wales, cond-mat/011212.en_US
dc.identifier.citedreferenceG. P. Johari and M. Goldstein, J. Chem. Phys. JCPSA653, 2372 (1970).en_US
dc.identifier.citedreferenceS. C. Glotzer, J. Non-Cryst. Solids JNCSBJ274, 342 (2000).en_US
dc.identifier.citedreferenceH. R. Schober, J. Non-Cryst. Solids JNCSBJ307–310, 40 (2002).en_US
dc.identifier.citedreferenceJ.-N. Roux, J.-L. Barrat, and J.-P. Hansen, J. Phys.: Condens. Matter JCOMEL1, 7171 (1989).en_US
dc.identifier.citedreferenceG. Wahnström, Phys. Rev. A PLRAAN44, 3752 (1991).en_US
dc.identifier.citedreferenceW. Kob and H. C. Andersen, Phys. Rev. E PLEEE851, 4626 (1995).en_US
dc.identifier.citedreferenceW. Kob and H. C. Andersen, Phys. Rev. E PLEEE852, 4134 (1995).en_US
dc.identifier.citedreferenceS. Büchner and A. Heuer, Phys. Rev. Lett. PRLTAO84, 2168 (2000).en_US
dc.identifier.citedreferenceT. Keyes and J. Chowdhary, Phys. Rev. E PLEEE864, 032201 (2001).en_US
dc.identifier.citedreferenceT. S. Grigera, A. Cavagna, I. Giardina, and G. Parisi, Phys. Rev. Lett. PRLTAO88, 055502 (2002).en_US
dc.identifier.citedreferenceB. Doliwa and A. Heuer, J. Phys.: Condens. Matter JCOMEL15, S849 (2003).en_US
dc.identifier.citedreferenceB. Doliwa, PhD thesis, University of Mainz, Germany, 2002.en_US
dc.identifier.citedreferenceU. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Rohr, and H. W. Spiess, Phys. Rev. Lett. PRLTAO81, 2727 (1998).en_US
dc.identifier.citedreferenceS. A. Reinsberg, X. H. Qiu, M. Wilhelm, H. W. Spiess, and M. D. Ediger, J. Chem. Phys. JCPSA6114, 7299 (2001).en_US
dc.identifier.citedreferenceH. Sillescu, J. Non-Cryst. Solids JNCSBJ243, 81 (1999), and references therein.en_US
dc.identifier.citedreferenceB. Doliwa and A. Heuer, Phys. Rev. Lett. PRLTAO80, 4915 (1998).en_US
dc.identifier.citedreferenceY. Gebremichael, T. B. Schrøder, F. W. Starr, and S. C. Glotzer, Phys. Rev. E PLEEE864, 051503 (2001).en_US
dc.identifier.citedreferenceM. Aichele, Y. Gebremichael, F. W. Starr, J. Baschnagel, and S. C. Glotzer, J. Chem. Phys. JCPSA6119, 5290 (2003).en_US
dc.identifier.citedreferenceY. Gebremichael, M. Vogel, and S. C. Glotzer, J. Chem. Phys. (in press).en_US
dc.identifier.citedreferenceF. H. Stillinger and T. A. Weber, Phys. Rev. A PLRAAN28, 2408 (1983).en_US
dc.identifier.citedreferenceJ. P. Garrahan and D. Chandler, Phys. Rev. Lett. PRLTAO89, 035704 (2002).en_US
dc.identifier.citedreferenceL. Berthier and J. P. Garrahan, J. Chem. Phys. JCPSA6119, 4367 (2003).en_US
dc.identifier.citedreferenceA. Heuer and K. Okun, J. Chem. Phys. JCPSA6106, 6176 (1997).en_US
dc.identifier.citedreferenceM. Bergroth, A. S. Keyes, M. Vogel, Y. Gebremichael, and S. C. Glotzer (unpublished results).en_US
dc.identifier.citedreferenceE. Rössler, Phys. Rev. Lett. PRLTAO65, 1595 (1990).en_US
dc.identifier.citedreferenceA. Kudlik, S. Benkhof, T. Blochowicz, C. Tschirwitz, and E. Rössler, J. Mol. Struct. JMOSB4479, 201 (1999).en_US
dc.identifier.citedreferenceK. Schmidt-Rohr and H. W. Spiess, Multidimensional Solid-State NMR and Polymers (Academic, London, 1994).en_US
dc.identifier.citedreferenceR. Böhmer, G. Hinze, G. Diezemann, and E. Rössler, Prog. Nucl. Magn. Reson. Spectrosc. PNMRAT39, 191 (2001).en_US
dc.identifier.citedreferenceU. Tracht, A. Heuer, and H. W. Spiess, J. Chem. Phys. JCPSA6111, 3720 (1999).en_US
dc.identifier.citedreferenceM. Vogel and E. Rössler, J. Phys. Chem. B JPCBFK104, 4285 (2000).en_US
dc.identifier.citedreferenceM. Vogel and E. Rössler, J. Chem. Phys. JCPSA6114, 5802 (2001).en_US
dc.identifier.citedreferenceM. Vogel, C. Tschirwitz, G. Schneider, C. Koplin, P. Medick, and E. Rössler, J. Non-Cryst. Solids JNCSBJ307–310, 326 (2002).en_US
dc.identifier.citedreferenceG. Hinze and H. Sillescu, J. Chem. Phys. JCPSA6104, 314 (1996).en_US
dc.identifier.citedreferenceG. Johnson, A. I. Mel’cuk, H. Gould, W. Klein, and R. D. Mountain, Phys. Rev. E PLEEE857, 5707 (1998).en_US
dc.identifier.citedreferenceR. Ahluwalia and S. P. Das, Phys. Rev. E PLEEE857, 5771 (1998).en_US
dc.identifier.citedreferenceN. Lacevic, F. W. Starr, T. B. Schrøder, V. N. Novikov, and S. C. Glotzer, Phys. Rev. E PLEEE866, 030101 (2002).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.