Show simple item record

Evolution of anisotropic microstructure and residual stress in sputtered Cr films

dc.contributor.authorZhao, Z. B.en_US
dc.contributor.authorYalisove, Steven M.en_US
dc.contributor.authorRek, Z. U.en_US
dc.contributor.authorBilello, John C.en_US
dc.date.accessioned2010-05-06T21:20:27Z
dc.date.available2010-05-06T21:20:27Z
dc.date.issued2002-12-15en_US
dc.identifier.citationZhao, Z. B.; Yalisove, S. M.; Rek, Z. U.; Bilello, J. C. (2002). "Evolution of anisotropic microstructure and residual stress in sputtered Cr films." Journal of Applied Physics 92(12): 7183-7192. <http://hdl.handle.net/2027.42/69911>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69911
dc.description.abstractA series of Cr films with varying thicknesses have been prepared using a multiple moving substrate deposition geometry. These films have been investigated with several experimental techniques, including synchrotron x-ray scattering, pole figures, electron microscope, and double crystal diffraction topography. It was found that the in-plane stresses are highly anisotropic in these Cr films. The anisotropic stresses, characterized by two principal stresses in two characteristic directions defined by the deposition geometry, are quantified based on a methodology given in the Appendix. The plan view transmission electron microscopy observations reveal that the Cr films develop well-organized microstructures. The grains, which are elongated along the radial direction, are crystallographically aligned as well. The development of crystallographic texture in the Cr films, further revealed by pole figures and azimuthal (ϕ) x-ray scans, depends on both the deposition geometry and the film thickness. The preferential orientation of film growth is [110] for thinner films (<1.6 μm), and then becomes [111] for thicker films. Correspondingly, the in-plane texture varies in a conformal manner. In the former case, [100] and [110] directions of grains preferentially align along the radial direction and the direction of platen rotation, respectively. In the latter case, the preferential orientation of grains in the radial direction becomes [112], while that in the direction of rotation remains to be [110]. The occurrence of the anisotropic stresses and their dependence on film thickness is related to the evolution of the anisotropic structure and in-plane texture. The correlation is discussed in terms of the modulus effect associated with in-plane texture, the stress relief at intercolumnar voids, and the texture transition. © 2002 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent838993 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEvolution of anisotropic microstructure and residual stress in sputtered Cr filmsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDelphi Research Laboratories, 51786 Shelby Parkway, Shelby Township, Michigan 48315en_US
dc.contributor.affiliationumCenter for Nanomaterials Science, Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.contributor.affiliationumCenter for Nanomaterials Science, Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.contributor.affiliationotherStanford Synchrotron Radiation Laboratory, Stanford University, California 94309en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69911/2/JAPIAU-92-12-7183-1.pdf
dc.identifier.doi10.1063/1.1521791en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceV. Guilbaud-Massereau, A. Celerier, and J. Machet, Thin Solid Films THSFAP258, 185 (1995).en_US
dc.identifier.citedreferenceA. K. Kulkarni and L. C. Chang, Thin Solid Films THSFAP301, 17 (1997).en_US
dc.identifier.citedreferenceL. Tang and G. Thomas, J. Appl. Phys. JAPIAU74, 5025 (1993).en_US
dc.identifier.citedreferenceR. A. Miller and H. J. Holland, Thin Solid Films THSFAP298, 182 (1997).en_US
dc.identifier.citedreferenceD. P. Tracy, D. B. Knorr, and K. P. Rodbell, J. Appl. Phys. JAPIAU76, 2671 (1994).en_US
dc.identifier.citedreferenceJ. A. Szpunar, Mater. Res. Soc. Symp. Proc. MRSPDH472, 45 (1997).en_US
dc.identifier.citedreferenceS. L. Duan, J. O. Artman, and D. E. Laughlin, J. Appl. Phys. JAPIAU67, 4913 (1990).en_US
dc.identifier.citedreferenceY. C. Feng, D. E. Laughlin, and D. N. Lambeth, J. Appl. Phys. JAPIAU76, 7311 (1994).en_US
dc.identifier.citedreferenceD. P. Ravipati, W. G. Haines, and J. L. Dockendorf, J. Vac. Sci. Technol. A JVTAD65, 1968 (1087).en_US
dc.identifier.citedreferenceH. C. Tsai, B. B. Lai, and A. Eltoukhy, J. Appl. Phys. JAPIAU71, 3579 (1992).en_US
dc.identifier.citedreferenceO. P. Karpenko, J. C. Bilello, and S. M. Yalisove, J. Appl. Phys. JAPIAU76, 4610 (1994).en_US
dc.identifier.citedreferenceO. P. Karpenko, J. C. Bilello, and S. M. Yalisove, J. Appl. Phys. JAPIAU82, 1397 (1997).en_US
dc.identifier.citedreferenceC. V. Thompson and R. Carel, Mater. Sci. Eng., B MSBTEK32, 211 (1995).en_US
dc.identifier.citedreferenceR. W. Hoffman, Thin Solid Films THSFAP34, 185 (1976).en_US
dc.identifier.citedreferenceH. Widischmann, CRC Crit. Rev. Solid State Mater. Sci. CCRSDA17, 547 (1992).en_US
dc.identifier.citedreferenceF. M. d’Heurle, Int. Mater. Rev. INMREO34, 53 (1989).en_US
dc.identifier.citedreferenceM. F. Doerner and W. D. Nix, CRC Crit. Rev. Solid State Mater. Sci. CCRSDA14, 225 (1988).en_US
dc.identifier.citedreferenceG. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed. (MIT, Cambridge, MA, 1971).en_US
dc.identifier.citedreferenceM. Janda and O. Stefan, Thin Solid Films THSFAP112, 127 (1984).en_US
dc.identifier.citedreferenceH. K. Pulker, Thin Solid Films THSFAP89, 191 (1982).en_US
dc.identifier.citedreferenceR. Abermann and R. Koch, Thin Solid Films THSFAP129, 71 (1985).en_US
dc.identifier.citedreferenceR. M. Fisher, J. Z. Duan, and A. G. Fox, Mater. Sci. Eng., A MSAPE3117, 3 (1989).en_US
dc.identifier.citedreferenceT. J. Vink, W. Walrave, J. L. C. Daams, A. G. Dirks, M. A. J. Somers, and K. J. A. van der Aker, J. Appl. Phys. JAPIAU74, 988 (1993).en_US
dc.identifier.citedreferenceP. K. Dutta and H. William, J. Phys. D JPAPBE3, 839 (1974).en_US
dc.identifier.citedreferenceU. C. Oh and J. H. Je, J. Appl. Phys. JAPIAU74, 1692 (1993).en_US
dc.identifier.citedreferenceJ. H. Je, D. Y. Noh, H. K. Kim, and K. S. Liang, J. Appl. Phys. JAPIAU81, 6126 (1997).en_US
dc.identifier.citedreferenceW. A. Brantley, J. Appl. Phys. JAPIAU44, 534 (1973).en_US
dc.identifier.citedreferenceG. G. Stoney, Proc. R. Soc. London, Ser. A PRLAAZ32, 172 (1909).en_US
dc.identifier.citedreferenceN. N. Davidenkov, Fiz. Tuerd. Tela (Leningrad) 2, 2919 (1960) [Sov. Phys. Solid State SPSSA72, 2595 (1961)].en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.