Show simple item record

Monte Carlo simulation of phase separation during thin‐film codeposition

dc.contributor.authorAdams, C. D.en_US
dc.contributor.authorSrolovitz, David J.en_US
dc.contributor.authorAtzmon, Michaelen_US
dc.date.accessioned2010-05-06T21:24:20Z
dc.date.available2010-05-06T21:24:20Z
dc.date.issued1993-08-01en_US
dc.identifier.citationAdams, C. D.; Srolovitz, D. J.; Atzmon, M. (1993). "Monte Carlo simulation of phase separation during thin‐film codeposition." Journal of Applied Physics 74(3): 1707-1715. <http://hdl.handle.net/2027.42/69953>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69953
dc.descriptionCopyright 1993 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The article originally appeared in Journal of Applied Physics 74, 1707 (1993) and may be found at http://jap.aip.org/resource/1/japiau/v74/i3/p1707_s1.
dc.description.abstractThe results of Monte Carlo simulation of phase separation during binary film coevaporation are presented for a range of deposition conditions. The model employed assumes that phase separation occurs through surface interdiffusion during deposition, while the bulk of the film remains frozen. Simulations were performed on A‐B alloy films having compositions of 10 and 50 vol % solute. For both film compositions, the lateral scale of the domains at the film surface evolves to a steady‐state size during deposition. A power‐law dependence of the steady‐state domain size on the inverse deposition rate is obtained. Simulation microstructures at 50 vol % compare favorably with those obtained in a previous experimental study of phase separation during coevaporation of Al‐Ge films of the same composition. Results of simulations performed at 10 vol % are compared with the predictions of a theoretical model based on the above assumptions. The power‐law exponent obtained from simulations at 10 vol % is different than that predicted by the theoretical model. The reasons for this difference are discussed.en_US
dc.format.extent3102 bytes
dc.format.extent1452732 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleMonte Carlo simulation of phase separation during thin‐film codepositionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109‐2136en_US
dc.contributor.affiliationumDepartment of Nuclear Engineering, University of Michigan, Ann Arbor, Michigan 48109‐2104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69953/2/JAPIAU-74-3-1707-1.pdf
dc.identifier.doi10.1063/1.354825en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceR. W. Cahn and P. Haasen, Physical Metallurgy (North-Holland, Amsterdam, 1983).en_US
dc.identifier.citedreferenceB. A. Movchan and A. V. Demchishin, Phys. Met. Metallogr. 28, 83 (1969).en_US
dc.identifier.citedreferenceJ. A. Thornton, J. Vac. Sci. Technol. 11, 666 (1974).en_US
dc.identifier.citedreferenceJ. A. Thornton, J. Vac. Sci. Technol. 12, 830 (1975).en_US
dc.identifier.citedreferenceD. J. Srolovitz, A. Mazor, and B. G. Bukiet, J. Vac. Sci. Technol. A 6, 2371 (1988).en_US
dc.identifier.citedreferenceD. J. Srolovitz, J. Vac. Sci. Technol. A 4, 2925 (1986).en_US
dc.identifier.citedreferenceA. Mazor, D. J. Srolovitz, P. S. Hagan, and B. G. Bukiet, Phys. Rev Lett. 60, 424 (1988).en_US
dc.identifier.citedreferenceS. Ling and M. P. Anderson, J. Electron. Mater. 17, 459 (1988).en_US
dc.identifier.citedreferenceK.-H. Müller, J. Appl. Phys. 58, 2573 (1985).en_US
dc.identifier.citedreferenceP. Meakin, P. Ramanlal, L. M. Sander, and R. C. Ball, Phys. Rev. A 34, 5091 (1986).en_US
dc.identifier.citedreferenceM. Atzmon, D. A. Kessler, and D. J. Srolovitz, J. Appl. Phys. 72, 442 (1992).en_US
dc.identifier.citedreferenceJ. W. Cahn, Acta Metall. 7, 18 (1959).en_US
dc.identifier.citedreferenceC. D. Adams, M. Atzmon, Y.-T. Cheng, and D. J. Srolovitz, J. Mater. Res. 7, 653 (1992).en_US
dc.identifier.citedreferenceG. S. Grest and D. J. Srolovitz, Phys. Rev. B 30, 5150 (1984).en_US
dc.identifier.citedreferenceE. A. Holm, J. A. Glazier, D. J. Srolovitz, and G. S. Grest, Phys. Rev. A 43, 2662 (1991).en_US
dc.identifier.citedreferenceK. Kawasaki, in Phase Transitions and Critical Phenomena, edited by C. Domb and M. S. Green (Academic, New York, 1972), Vol. 2.en_US
dc.identifier.citedreferenceP. D. Shewmon, Diffusion in Solids, 2nd ed. (McGraw-Hill, New York, 1989).en_US
dc.identifier.citedreferenceD. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys (Van Nostrand Reinhold, Berkshire, 1981).en_US
dc.identifier.citedreferenceI. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).en_US
dc.identifier.citedreferenceC. Wagner, Z. Elektrochem. 65, 243 (1961).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.