Show simple item record

Molecular dynamics study of cristobalite silica using a charge transfer three-body potential: Phase transformation and structural disorder

dc.contributor.authorHuang, Lipingen_US
dc.contributor.authorKieffer, Johnen_US
dc.date.accessioned2010-05-06T21:24:53Z
dc.date.available2010-05-06T21:24:53Z
dc.date.issued2003-01-15en_US
dc.identifier.citationHuang, Liping; Kieffer, John (2003). "Molecular dynamics study of cristobalite silica using a charge transfer three-body potential: Phase transformation and structural disorder." The Journal of Chemical Physics 118(3): 1487-1498. <http://hdl.handle.net/2027.42/69959>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69959
dc.description.abstractStructural and dynamic properties of cristobalite silica have been studied using molecular dynamics simulations based on a charge transfer three-body potential model. In this potential model, the directional covalent bonding of SiO2SiO2 is characterized by a charge transfer function of the interatomic distance between Si and O atoms, and in the form of Si–O–Si and O–Si–O three-body interactions. The dynamic properties such as infrared spectra and density of states at room and elevated temperatures are in excellent agreement with experiments, and are also consistent with the recently proposed rigid unit modes model. The α- and β-cristobalite crystallographic structures are well reproduced in this model, and the transition between these modifications occurs reversibly and reproducibly in simulations, both as a result of changes in pressure and temperature. The thermally induced transition results in a significantly more disordered β-cristobalite than the pressure-induced β-cristobalite at room temperature. While simulated α-cristobalite exhibits a positive thermal expansion coefficient, it is almost zero for β-cristobalite up to 2000 K and slightly negative at higher temperatures, confirming results from recent x-ray diffraction experiments and other simulations with potential models based on ab initio calculations. © 2003 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent616471 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleMolecular dynamics study of cristobalite silica using a charge transfer three-body potential: Phase transformation and structural disorderen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.contributor.affiliationotherDepartment of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69959/2/JCPSA6-118-3-1487-1.pdf
dc.identifier.doi10.1063/1.1529684en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceG. L. Hua, T. R. Welberry, R. L. Withers, and J. G. Thompson, J. Appl. Crystallogr. JACGAR21, 458 (1988).en_US
dc.identifier.citedreferenceT. R. Welberry, G. L. Hua, and R. L. Withers, J. Appl. Crystallogr. JACGAR22, 87 (1989).en_US
dc.identifier.citedreferenceR. L. Withers, J. G. Thompson, and T. R. Welberry, Phys. Chem. Miner. PCMIDU16, 517 (1989).en_US
dc.identifier.citedreferenceD. M. Hatch and S. Ghose, Phys. Chem. Miner. PCMIDU17, 554 (1991).en_US
dc.identifier.citedreferenceR. Spearing, I. Farnan, and J. F. Stebbins, Phys. Chem. Miner. PCMIDU19, 307 (1992).en_US
dc.identifier.citedreferenceW. W. Schmahl, I. P. Swainson, M. T. Dove, and A. Graeme-Barber, Z. Kristallogr. ZEKRDZ201, 125 (1992).en_US
dc.identifier.citedreferenceI. P. Swainson and M. T. Dove, Phys. Rev. Lett. PRLTAO71, 193 (1993).en_US
dc.identifier.citedreferenceF. Liu, S. H. Garofalini, R. D. King-Smith, and D. Vanderbilt, Phys. Rev. Lett. PRLTAO70, 750 (1993).en_US
dc.identifier.citedreferenceB. L. Phillips, J. G. Thompson, Y. Xia, and R. J. Kirkpatrick, Phys. Chem. Miner. PCMIDU20, 341 (1993).en_US
dc.identifier.citedreferenceI. P. Swainson and M. T. Dove, Phys. Rev. Lett. PRLTAO71, 193 (1993).en_US
dc.identifier.citedreferenceI. P. Swainson and M. T. Dove, Phys. Chem. Miner. PCMIDU22, 61 (1995).en_US
dc.identifier.citedreferenceI. P. Swainson and M. T. Dove, J. Phys.: Condens. Matter JCOMEL7, 1771 (1995).en_US
dc.identifier.citedreferenceM. T. Dove, D. A. Keen, A. C. Hannon, and I. P. Swainson, Phys. Chem. Miner. PCMIDU24, 311 (1997).en_US
dc.identifier.citedreferenceL. Duffrène and J. Kieffer, J. Phys. Chem. Solids JPCSAW59, 1025 (1998).en_US
dc.identifier.citedreferenceE. Bourova and P. Richet, Geophys. Res. Lett. GPRLAJ25, 2333 (1998).en_US
dc.identifier.citedreferenceM. Gambhir, M. T. Dove, and V. Heine, Phys. Chem. Miner. PCMIDU26, 484 (1999).en_US
dc.identifier.citedreferenceP. Richet and B. Mysen, Geophys. Res. Lett. GPRLAJ26, 2283 (1999).en_US
dc.identifier.citedreferenceD. A. Keen and M. T. Dove, J. Phys.: Condens. Matter JCOMEL11, 9263 (1999).en_US
dc.identifier.citedreferenceE. Bourova, S. C. Parker, and P. Richet, Phys. Rev. B PRBMDO62, 12052 (2000).en_US
dc.identifier.citedreferenceM. G. Tucker, M. P. Squires, M. T. Dove, and D. A. Keen, J. Phys.: Condens. Matter JCOMEL13, 403 (2001).en_US
dc.identifier.citedreferenceR. W. G. Wyckoff, Am. J. Sci. AJSCAP209, 448 (1925).en_US
dc.identifier.citedreferenceA. F. Wright and A. J. Leadbetter, Philos. Mag. PHMAA431, 1391 (1975).en_US
dc.identifier.citedreferenceD. C. Allan and M. P. Teter, Phys. Rev. Lett. PRLTAO59, 1136 (1987).en_US
dc.identifier.citedreferenceJ. Chelikowsky, N. Troullier, J. L. Martins, and H. E. King, Phys. Rev. B PRBMDO44, 489 (1991).en_US
dc.identifier.citedreferenceR. A. Jackson and C. R. A. Catlow, Mol. Simul. MOSIEA1, 207 (1988).en_US
dc.identifier.citedreferenceG. J. Kramer, N. P. Farragher, B. W. H. van Beest, and R. A. van Santen, Phys. Rev. B PRBMDO43, 5068 (1991).en_US
dc.identifier.citedreferenceK. de Boer, A. P. J. Jansen, and R. A. van Santen, Chem. Phys. Lett. CHPLBC223, 46 (1994).en_US
dc.identifier.citedreferenceA. C. Lasaga and G. V. Gibbs, Phys. Chem. Miner. PCMIDU16, 28 (1988).en_US
dc.identifier.citedreferenceA. C. Lasaga and G. V. Gibbs, Phys. Chem. Miner. PCMIDU14, 107 (1987).en_US
dc.identifier.citedreferenceS. Tsuneyuki, M. Tsukada, H. Aoki, and Y. Matsui, Phys. Rev. Lett. PRLTAO61, 869 (1988).en_US
dc.identifier.citedreferenceB. W. H. van Beest, G. J. Kramer, and R. A. van Santen, Phys. Rev. Lett. PRLTAO64, 1955 (1990).en_US
dc.identifier.citedreferenceN. R. Keskar and J. R. Chelikowky, Phys. Rev. B PRBMDO46, 1 (1992).en_US
dc.identifier.citedreferenceM. J. Sander, M. Leslie, and C. R. A. Catlow, J. Chem. Soc. Chem. Commun. JCCCAT19, 1271 (1984).en_US
dc.identifier.citedreferenceR. L. Erikson and C. J. Hostetler, Geochim. Cosmochim. Acta GCACAK51, 1209 (1987).en_US
dc.identifier.citedreferenceS. Tsuneyuki, Y. Matsui, H. Aoki, and M. Tsukada, Nature (London) NATUAS339, 209 (1989).en_US
dc.identifier.citedreferenceS. Tsuneyuki, H. Aoki, M. Tsukada, and Y. Matsui, Phys. Rev. Lett. PRLTAO64, 776 (1990).en_US
dc.identifier.citedreferenceJ. R. Rustad, D. A. Yuen, and F. J. Spera, Phys. Rev. A PLRAAN42, 2081 (1990).en_US
dc.identifier.citedreferenceJ. R. Chelikowsky, H. E. J. King, and J. Glinnemann, Phys. Rev. B PRBMDO41, 10866 (1990).en_US
dc.identifier.citedreferenceR. G. Guido, D. Vella, and H. C. Andersen, J. Chem. Phys. JCPSA694, 5056 (1991).en_US
dc.identifier.citedreferenceS. T. John and D. K. Dennis, J. Chem. Phys. JCPSA695, 9176 (1991).en_US
dc.identifier.citedreferenceP. Vashishta, R. K. Kalia, and J. P. Rino, Phys. Rev. B PRBMDO41, 12197 (1989).en_US
dc.identifier.citedreferenceB. P. Feuston and S. H. Garofalini, J. Chem. Phys. JCPSA689, 5818 (1988).en_US
dc.identifier.citedreferenceC. R. A. Catlow and A. N. Cormack, Int. Rev. Phys. Chem. IRPCDL6, 227 (1987).en_US
dc.identifier.citedreferenceM. L. Huggins and J. E. Mayer, J. Chem. Phys. JCPSA61, 643 (1933).en_US
dc.identifier.citedreferenceP. P. Ewald, Ann. Phys. (Leipzig) ANPYA264, 253 (1921).en_US
dc.identifier.citedreferenceC. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996).en_US
dc.identifier.citedreferenceT. Hahn, International Tables for Crystallography (Reidel, Dordrecht, 1984).en_US
dc.identifier.citedreferenceJ. J. Pluth, J. V. Smith, and J. Faber, J. Appl. Phys. JAPIAU57, 1045 (1985).en_US
dc.identifier.citedreferenceH. C. Andersen, J. Chem. Phys. JCPSA672, 2384 (1980).en_US
dc.identifier.citedreferenceM. Parrinello and A. Rahman, J. Appl. Phys. JAPIAU52, 7182 (1981).en_US
dc.identifier.citedreferenceS. Nose, J. Chem. Phys. JCPSA681, 511 (1984).en_US
dc.identifier.citedreferenceK. L. Klein, Molecular Dynamics Simulation of Statistical Mechanical Systems (North-Holland, Amsterdam, 1986).en_US
dc.identifier.citedreferenceM. T. Dove, Introduction to Lattice Dynamics (Cambridge University Press, Cambridge, 1993).en_US
dc.identifier.citedreferenceP. H. Berens and K. R. Wilson, J. Chem. Phys. JCPSA674, 4872 (1981).en_US
dc.identifier.citedreferenceD. C. Anderson, J. Kieffer, and S. Klarsfeld, J. Chem. Phys. JCPSA698, 8978 (1993).en_US
dc.identifier.citedreferenceK. Yamahara, K. Okazaki, and K. Kawamura, J. Non-Cryst. Solids JNCSBJ291, 32 (2001).en_US
dc.identifier.citedreferenceM. T. Dove, A. P. Giddy, and V. Heine, Trans. Am. Crystallogr. Assoc. TACAAH27, 65 (1993).en_US
dc.identifier.citedreferenceM. G. Tucker, M. T. Dove, and D. A. Keen, J. Phys.: Condens. Matter JCOMEL12, L723 (2000).en_US
dc.identifier.citedreferenceK. S. Finnie, J. G. Thompson, and R. L. Withers, J. Phys. Chem. Solids JPCSAW55(1), 23 (1994).en_US
dc.identifier.citedreferenceE. K. H. Salje, Phase Transitions PHTRDP37, 83 (1992).en_US
dc.identifier.citedreferenceG. L. Hua, T. R. Welberry, R. L. Withers, and J. G. Thompson, J. Appl. Crystallogr. JACGAR21, 458 (1988).en_US
dc.identifier.citedreferenceG. Dolino, B. Berge, M. Vallade, and F. Moussa, J. Phys. (Paris)JPAHER 2, 1461 (1992).en_US
dc.identifier.citedreferenceF. Amuento, Am. Mineral. AMMIAY51, 1176 (1966).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.