Show simple item record

Effect of strain rate on the formation of nanocrystallites in an Al-based amorphous alloy during nanoindentation

dc.contributor.authorJiang, W. H.en_US
dc.contributor.authorPinkerton, F. E.en_US
dc.contributor.authorAtzmon, Michaelen_US
dc.date.accessioned2010-05-06T21:27:47Z
dc.date.available2010-05-06T21:27:47Z
dc.date.issued2003-06-01en_US
dc.identifier.citationJiang, W. H.; Pinkerton, F. E.; Atzmon, M. (2003). "Effect of strain rate on the formation of nanocrystallites in an Al-based amorphous alloy during nanoindentation." Journal of Applied Physics 93(11): 9287-9290. <http://hdl.handle.net/2027.42/69990>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69990
dc.descriptionCopyright 2003 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The article originally appeared in Journal of Applied Physics 93, 9287 (2003) and may be found at http://jap.aip.org/resource/1/japiau/v93/i11/p9287_s1.
dc.description.abstractThe effect of deformation by nanoindentation on nanocrystallization in amorphous Al90Fe5Gd5Al90Fe5Gd5 was investigated by transmission electron microscopy. Massive precipitation of nanocrystallites is observed within the indents. Under the quasistatic condition used, a temperature rise due to adiabatic heating is likely negligible, confirming that plastic deformation can induce crystallization without a heating effect. The nucleation of nanocrystallites is significantly affected by the strain rate. © 2003 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent144804 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEffect of strain rate on the formation of nanocrystallites in an Al-based amorphous alloy during nanoindentationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumGeneral Motors R&D Center, 30500 Mound Road, Warren, Michigan 48090-9055en_US
dc.contributor.affiliationumDepartment of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69990/2/JAPIAU-93-11-9287-1.pdf
dc.identifier.doi10.1063/1.1571234en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceG. J. Shiflet, Y. He, and S. J. Poon, Scr. Metall. SCRMBU22, 1661 (1988).en_US
dc.identifier.citedreferenceY. He, G. J. Shiflet, and S. J. Poon, Scr. Metall. SCRMBU22, 1813 (1988).en_US
dc.identifier.citedreferenceT. Kulik, J. Non-Cryst. Solids JNCSBJ287, 145 (2001).en_US
dc.identifier.citedreferenceH. Chen, Y. He, G. J. Shiflet, and S. J. Poon, Scr. Metall. Mater. SCRMEX25, 1421 (1991).en_US
dc.identifier.citedreferenceY. H. Kim, G. S. Choi, I. G. Kim, and A. Inoue, Mater. Trans., JIM MTJIEY37, 1471 (1996).en_US
dc.identifier.citedreferenceW. S. Sun and M. X. Quan, Mater. Lett. MLETDJ27, 101 (1996).en_US
dc.identifier.citedreferenceH. Chen, Y. He, G. J. Shiflet, and S. J. Poon, Nature (London) NATUAS367, 541 (1994).en_US
dc.identifier.citedreferenceY. He, G. J. Shiflet, and S. J. Poon, Acta Metall. Mater. AMATEB43, 83 (1995).en_US
dc.identifier.citedreferenceM. C. Gao, R. E. Hackenberg, and G. J. Shiflet, Mater. Trans., JIM MTJIEY42, 1741 (2001).en_US
dc.identifier.citedreferenceA. A. Csontos and G. J. Shiflet, Nanostruct. Mater. NMAEE79, 281 (1997).en_US
dc.identifier.citedreferenceJ. J. Kim, Y. Choi, S. Suresh, and A. S. Argon, Science SCIEAS295, 654 (2002).en_US
dc.identifier.citedreferenceW. H. Jiang and M. Atzmon, J. Mater. Res.JMREEE 18, 755 (2003).en_US
dc.identifier.citedreferenceW. H. Jiang and M. Atzmon (unpublished work).en_US
dc.identifier.citedreferenceW. B. Pearson, Handbook of Lattice Spacing and Structures of Metals and Alloys (Pergamon, London, 1958).en_US
dc.identifier.citedreferenceW. J. Wright, R. B. Schwarz, and W. D. Nix, Mater. Sci. Eng., A MSAPE3319-321, 229 (2001).en_US
dc.identifier.citedreferenceH. S. Chen, in Amorphous Metallic Alloys, edited by F. E. Luborsky (Butterworths, London, 1983).en_US
dc.identifier.citedreferenceJ. Xu and M. Atzmon, Appl. Phys. Lett. APPLAB73, 1805 (1998).en_US
dc.identifier.citedreferenceG. Mazzone, A. Montone, and M. Vittori Antisari, Phys. Rev. Lett. PRLTAO65, 2019 (1990).en_US
dc.identifier.citedreferenceJ. Xu, G. S. Collins, L. S. J. Peng, and M. Atzmon, Acta Mater. ACMAFD47, 1241 (1999).en_US
dc.identifier.citedreferenceF. Ye and K. Lu, Acta Mater. ACMAFD47, 2449 (1999).en_US
dc.identifier.citedreferenceW. H. Jiang and M. Atzmon (unpublished work).en_US
dc.identifier.citedreferenceB. Park, F. Spaepen, J. M. Poate, D. C. Jacobson, and F. Priolo, J. Appl. Phys. JAPIAU68, 4556 (1990).en_US
dc.identifier.citedreferenceH. Biloni and W. J. Boettinger, in Physical Metallurgy, edited by R. W. Cahn and P. Haasen (Elsevier Science B. V., Amsterdam, The Netherlands, 1996).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.