Show simple item record

Grain-size dependence of plastic deformation in nanocrystalline Fe

dc.contributor.authorJang, D.en_US
dc.contributor.authorAtzmon, Michaelen_US
dc.date.accessioned2010-05-06T22:01:26Z
dc.date.available2010-05-06T22:01:26Z
dc.date.issued2003-06-01en_US
dc.identifier.citationJang, D.; Atzmon, M. (2003). "Grain-size dependence of plastic deformation in nanocrystalline Fe." Journal of Applied Physics 93(11): 9282-9286. <http://hdl.handle.net/2027.42/70350>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70350
dc.descriptionCopyright 2003 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The article originally appeared in Journal of Applied Physics 93, 9282 (2003) and may be found at http://jap.aip.org/resource/1/japiau/v93/i11/p9282_s1.
dc.description.abstractPlastic deformation of nanocrystalline Fe was investigated by nanoindentation. Samples, synthesized by mechanical attrition, consisted of powder particles with diameters greater than 30 μm. The average grain diameters within the particles of different samples ranged from 10 nm to 10 μm. To avoid potential artifacts, samples were prepared without use of heat treatment, and measurements were conducted at a depth significantly smaller than the powder particle size. Corrections were made for the indentation-size effect and for pileup or sink in around the indent. The volume-averaged grain size was used in the analysis. The Hall-Petch relation is obeyed for grain sizes above about 18 nm, and slight softening occurs at smaller grain sizes. The strain-rate sensitivity increases monotonically with decreasing grain size. The results are consistent with grain-boundary sliding. © 2003 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent60533 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleGrain-size dependence of plastic deformation in nanocrystalline Feen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70350/2/JAPIAU-93-11-9282-1.pdf
dc.identifier.doi10.1063/1.1569035en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceH. Gleiter, Prog. Mater. Sci. PRMSAQ33, 223 (1989).en_US
dc.identifier.citedreferenceJ. R. Weertman, D. Farkas, K. Hemker, H. Kung, M. Mayo, R. Mitra, and H. Van Swygenhoven, MRS Bull. MRSBEA24, 44 (1999).en_US
dc.identifier.citedreferenceV. Y. Gertsman, M. Hoffmann, H. Gleiter, and R. Birringer, Acta Metall. Mater. AMATEB42, 3539 (1994).en_US
dc.identifier.citedreferenceH. Chang, C. J. Altstetter, and R. S. Averback, J. Mater. Res. JMREEE7, 2962 (1992).en_US
dc.identifier.citedreferenceC. C. Koch, Nanostruct. Mater. NMAEE79, 13 (1997).en_US
dc.identifier.citedreferenceK. Lu, Mater. Sci. Eng., R. MIGIEA16, 161 (1996).en_US
dc.identifier.citedreferenceE. O. Hall, Proc. Phys. Soc. London, Sect. B PPSBAP64, 747 (1951).en_US
dc.identifier.citedreferenceN. J. Petch, J. Iron Steel Inst., London JISIAX174, 25 (1953).en_US
dc.identifier.citedreferenceR. W. Siegel and G. E. Fougere, Mater. Res. Soc. Symp. Proc. MRSPDH362, 219 (1995).en_US
dc.identifier.citedreferenceD. Tabor, The Hardness of Metals (Clarendon, Oxford, UK, 1951), p. 95.en_US
dc.identifier.citedreferenceG. E. Dieter, Mechanical Metallurgy, 3rd ed. (McGraw-Hill, New York, 1986), pp. 325–337.en_US
dc.identifier.citedreferenceA. H. Chokshi, A. Rosen, and H. Gleiter, Scr. Metall. SCRMBU23, 1679 (1989).en_US
dc.identifier.citedreferenceG. Palumbo, U. Erb, and K. T. Aust, Scr. Metall. Mater. SCRMEX24, 2347 (1990).en_US
dc.identifier.citedreferenceK. Lu, W. D. Wei, and J. T. Wang, Scr. Metall. Mater. SCRMEX24, 2319 (1990).en_US
dc.identifier.citedreferenceT. Christman and M. Jain, Scr. Metall. Mater. SCRMEX25, 767 (1991).en_US
dc.identifier.citedreferenceD. K. Kim and K. Okazaki, Mater. Sci. Forum MSFOEP88-90, 553 (1992).en_US
dc.identifier.citedreferenceH. Chang, C. J. Altstetter, and R. S. Averback, J. Mater. Res. JMREEE7, 2962 (1992).en_US
dc.identifier.citedreferenceC. Cheung, G. Palumbo, and U. Erb, Scr. Metall. Mater. SCRMEX31, 735 (1994).en_US
dc.identifier.citedreferenceU. Erb, Nanostruct. Mater. NMAEE76, 533 (1995).en_US
dc.identifier.citedreferenceH. Alves, M. Ferreira, U. Köster, and B. Müller, Mater. Sci. Forum MSFOEP225-226, 769 (1996).en_US
dc.identifier.citedreferenceA. S. Khan, H. Zhang, and L. Takacs, Int. J. Plasticity ZZZZZZ16, 1459 (2000).en_US
dc.identifier.citedreferenceT. Volpp, E. Göring, W. M. Kuschke, and E. Arzt, Nanostruct. Mater. NMAEE77, 855 (1997).en_US
dc.identifier.citedreferenceC. C. Koch and J. Narayan, Mater. Res. Soc. Symp. Proc. MRSPDH634, B5.1.1 (2001).en_US
dc.identifier.citedreferenceT. R. Malow and C. C. Koch, Metall. Mater. Trans. A MMTAEB29A, 2285 (1998).en_US
dc.identifier.citedreferenceV. G. Gryaznov, V. A. Solov’ev, and L. I. Trusov, Scr. Metall. Mater. SCRMEX24, 1529 (1990).en_US
dc.identifier.citedreferenceT. G. Nieh and J. Wadsworth, Scr. Metall. Mater. SCRMEX25, 955 (1991).en_US
dc.identifier.citedreferenceM. Ke, S. A. Hackney, W. W. Milligan, and E. C. Aifantis, Nanostruct. Mater. NMAEE75, 689 (1995).en_US
dc.identifier.citedreferenceJ. Schiøtz, F. D. DiTolla, and K. W. Jacobsen, Nature (London) NATUAS391, 561 (1998).en_US
dc.identifier.citedreferenceH. Van Swygenhoven and A. Caro, Appl. Phys. Lett. APPLAB71, 1652 (1997).en_US
dc.identifier.citedreferenceM. J. Mayo, R. W. Siegel, A. Narayanasami, and W. D. Nix, J. Mater. Res. JMREEE5, 1073 (1990).en_US
dc.identifier.citedreferenceH. H. Tian and M. Atzmon, Philos. Mag. A PMAADG79, 1769 (1999).en_US
dc.identifier.citedreferenceW. C. Oliver and G. M. Pharr, J. Mater. Res. JMREEE7, 1564 (1992).en_US
dc.identifier.citedreferenceK. W. McElhaney, J. J. Vlassak, and W. D. Nix, J. Mater. Res. JMREEE13, 1300 (1998).en_US
dc.identifier.citedreferenceG. Palumbo, S. J. Thorpe, and K. T. Aust, Scr. Metall. SCRMEX24, 1347 (1990).en_US
dc.identifier.citedreferenceH. S. Kim and M. B. Bush, Nanostruct. Mater. NMAEE711, 361 (1999).en_US
dc.identifier.citedreferenceW. D. Nix and H. Gao, J. Mech. Phys. Solids JMPSA846, 411 (1998).en_US
dc.identifier.citedreferenceP. Scherrer, Nachrichten Göttinger Gesellschaft ZZZZZZ2, 98 (1918).en_US
dc.identifier.citedreferenceT. R. Malow, C. C. Koch, P. Q. Miraglia, and K. L. Murty, Mater. Sci. Eng., A MSAPE3252, 36 (1998).en_US
dc.identifier.citedreferenceH. J. Fecht, Nanostruct. Mater. NMAEE76, 33 (1995).en_US
dc.identifier.citedreferenceH. Van Swygenhoven, P. M. Derlet, and A. Hasnaoui, Phys. Rev. B PRBMDO66, 024101 (2002).en_US
dc.identifier.citedreferenceL. Lu, M. L. Sui, and K. Lu, Science SCIEAS287, 1463 (2000).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.