Show simple item record

Crosshatched surface morphology in strained III‐V semiconductor films

dc.contributor.authorChang, Kevin H.en_US
dc.contributor.authorGilbala, Ronalden_US
dc.contributor.authorSrolovitz, David J.en_US
dc.contributor.authorBhattacharya, Pallab K.en_US
dc.contributor.authorMansfield, John F.en_US
dc.date.accessioned2010-05-06T22:29:57Z
dc.date.available2010-05-06T22:29:57Z
dc.date.issued1990-05-01en_US
dc.identifier.citationChang, Kevin H.; Gilbala, Ronald; Srolovitz, David J.; Bhattacharya, Pallab K.; Mansfield, John F. (1990). "Crosshatched surface morphology in strained III‐V semiconductor films." Journal of Applied Physics 67(9): 4093-4098. <http://hdl.handle.net/2027.42/70652>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70652
dc.description.abstractThe correlation between the surface crosshatched morphology and the interfacial misfit dislocations in strained III‐V semiconductor heteroepitaxy has been studied. The surface pattern is clearly seen on samples grown at high temperature (520 °C) and those with small lattice‐mismatched (f<2%) systems. A poorly defined crosshatched morphology was found on layers grown at relatively low temperature (400 °C). As the lattice mismatch of the strained layer becomes larger than 2%, a roughly textured surface morphology is commonly observed in place of actual cross‐hatching. Few threading dislocations are observed in the strained layer when the crosshatched pattern develops. It is also noted that the surface crosshatched pattern develops after the majority of the interfacial misfit dislocations are generated. The result suggests that the surface crosshatch pattern is directly related to the generation of interfacial misfit dislocations through glide processes.en_US
dc.format.extent3102 bytes
dc.format.extent1144146 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleCrosshatched surface morphology in strained III‐V semiconductor filmsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumElectron Microbeam Analysis Laboratory, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70652/2/JAPIAU-67-9-4093-1.pdf
dc.identifier.doi10.1063/1.344968en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceG. C. Osburn, J. Vac. Sci. Technol. B 1, 379 (1983).en_US
dc.identifier.citedreferenceR. A. Burmesiter, G. P. Pighini, and P. E. Greene, Trans. TMS‐AIME 245, 587 (1969).en_US
dc.identifier.citedreferenceS. Kishino, M. Ogirima, and K. Kurata, J. Electrochem. Soc. 119, 618 (1972).en_US
dc.identifier.citedreferenceG. H. Olsen, M. S. Abrahams, and T. J. Zamerowski, J. Electrochem. Soc. 121, 1650 (1974).en_US
dc.identifier.citedreferenceG. H. Olsen, J. Cryst. Growth 31, 223 (1975).en_US
dc.identifier.citedreferenceE. Menu, P. Gentric, D. Moroni, J. N. Patillon, and J. P. Andre, Semicond. Sci. Technol. 3, 546 (1988).en_US
dc.identifier.citedreferenceT. Nishioka, Y. Itoh, A. Yamamoto, and M. Yamaguchi, Appl. Phys. Lett. 51, 1928 (1987).en_US
dc.identifier.citedreferenceJ. W. Matthews and A. E. Blakeslee, J. Crystl. Growth 29, 273 (1975).en_US
dc.identifier.citedreferenceJ. M. Woodall, P. D. Kirshner, D. L. Rogers, and M. Chisholm, in Proceedings of the IEEE∕Cornell Conference, 10–12 August 1987, IEEE Cat. No. 87CH2526‐2, edited by W. R. Frensley (IEEE, New York, 1987).en_US
dc.identifier.citedreferenceB. de Cremoux, P. Hirtz, and J. Ricciardi, in Proceedings Gallium Arsenide and Related Compounds 1980, edited H. W. Thim (The Institute of Physics, London, 1981).en_US
dc.identifier.citedreferenceG. H. Smith and R. E. Burge, Acta Crystallogr. 15, 182 (19062).en_US
dc.identifier.citedreferenceG. B. Stringfellow, J. Crystl. Growth 58, 194 (1982).en_US
dc.identifier.citedreferenceM. M. J. Treacy, J. M. Gibson, and A. Howie, Philos. Mag. A 51, 389 (1985).en_US
dc.identifier.citedreferenceF. Glas, J. Appl. Phys. 62, 3201 (1987).en_US
dc.identifier.citedreferenceJ. W. Matthews, A. E. Blakeslee, and S. Mader, Thin Solid Films 33, 253 (1976).en_US
dc.identifier.citedreferenceP. R. Berger, K. Chang, P. Bhattacharya, J. Singh, and K. K. Bajaj, Appl. Phys. Lett. 53, 684 (1988).en_US
dc.identifier.citedreferenceC. J. Kiely, J.‐I. Chyi, A. Rockett, and H. Morkoç, in, Abstracts, Material Research Society Fall Meeting, 1988, p. 470.en_US
dc.identifier.citedreferenceJ. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974).en_US
dc.identifier.citedreferenceK. H. Chang, P. K. Bhattacharya, and R. Gibala, J. Appl. Phys. 66, 2993 (1989).en_US
dc.identifier.citedreferenceA similar plot of epilayer thickness versus misfit was previously shown in Ref. 9 without the surface Crosshatch information.en_US
dc.identifier.citedreferenceU. F. Kocks, A. S. Argon, and M. F. Ashby, Prog. Mater. Sci., edited by B. Chalmers, T. B. Massalski, and J. W. Christian (Pergamon, New York, 1974). Vol. 19.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.