Show simple item record

Surface roughening during low temperature Si(100) epitaxy

dc.contributor.authorKarpenko, O. P.en_US
dc.contributor.authorYalisove, Steven M.en_US
dc.contributor.authorEaglesham, D. J.en_US
dc.date.accessioned2010-05-06T22:57:57Z
dc.date.available2010-05-06T22:57:57Z
dc.date.issued1997-08-01en_US
dc.identifier.citationKarpenko, O. P.; Yalisove, S. M.; Eaglesham, D. J. (1997). "Surface roughening during low temperature Si(100) epitaxy." Journal of Applied Physics 82(3): 1157-1165. <http://hdl.handle.net/2027.42/70948>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70948
dc.description.abstractReflection high energy electron diffraction (RHEED) was used to investigate surface roughening during low temperature Si(100) homoepitaxy. The use of RHEED allowed in situ real-time collection of structural information from the growth surface. RHEED patterns were analyzed using a simple kinematic diffraction model which related average surface roughness and average in-plane coherence lengths to the lengths and widths of individual RHEED diffraction features, respectively. These RHEED analyses were quantified by calibrating against cross-section transmission electron microscopy (TEM) analyses of surface roughening. Both the RHEED and TEM analyses revealed similar scaling of surface roughness with deposited thickness, with RHEED analyses resulting in roughness values a factor of ∼2 times lower than those obtained from TEM analyses. RHEED was then used to analyze surface roughening during Si(100) homoepitaxial growth in a range of temperatures, 200–275 °C. Initially, surface roughness increased linearly with deposited thickness at a roughening rate that decreased with increasing growth temperature. At each growth temperature, near the crystalline/amorphous Si phase transition, the rate of surface roughening decreased. This decrease coincided with the formation of facets and twins along Si{111} planes. Surface roughness eventually saturated at a value which followed an Arrhenius relation with temperature Eact ∼ 0.31±0.1Eact∼0.31±0.1 eV. This activation energy agrees well with the activation energy for the crystalline/amorphous Si phase transition, Eact ∼ 0.35Eact∼0.35 eV, and suggests that limited thickness epitaxy is characterized by this saturation roughness. Once the saturation roughness was reached, no significant changes in surface roughness were detected. In addition, the decay of average in-plane coherence lengths was also temperature dependent. Values of average coherence lengths, at the crystalline/amorphous Si phase transition, also increased with growth temperature. All of these data are consistent with a model that links surface roughening to the formation of critically sized Si{100} facets and the eventual breakdown in crystalline growth. © 1997 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent794356 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleSurface roughening during low temperature Si(100) epitaxyen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Department of Materials Science and Engineering, 2300 Hayward Street, Ann Arbor, Michigan 48109-2136en_US
dc.contributor.affiliationotherBell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, New Jersey 07974en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70948/2/JAPIAU-82-3-1157-1.pdf
dc.identifier.doi10.1063/1.365883en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceV. Drouot, M. Gendry, C. Santinelli, P. Viktorovitch, G. Hollinger, S. Elleuh, and J.-L. Pelouard, J. Appl. Phys. JAPIAU77, 1810 (1995).en_US
dc.identifier.citedreferenceM. Morita, A. Teramoto, K. Makihara, T. Ohmi, Y. Nakazato, A. Uchiyama, and T. Abe, Proceeding of the Third International Symposium on Ultra Large Scale Integration Science and Technology (Electrochemical Society, Pennington, NJ, 1991).en_US
dc.identifier.citedreferenceSee for example, S. P. Murarka, in Metallization: Theory and Practise for VLSI and USLI (Butterworth and Heinemann, Boston, 1993).en_US
dc.identifier.citedreferenceE. Chason, T. M. Mayer, B. K. Kellerman, D. T. McIlroy, and A. J. Howard, Phys. Rev. Lett. PRLTAO72, 3040 (1994).en_US
dc.identifier.citedreferenceC. Orme, M. D. Johnson, J. L. Sudijono, K. T. Leung, and B. G. Orr, Appl. Phys. Lett. APPLAB64, 860 (1994).en_US
dc.identifier.citedreferenceJ. Chevrier, V. LeThanh, R. Buys, and J. Derrien, Europhys. Lett. EULEEJ16, 737 (1991).en_US
dc.identifier.citedreferenceM. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. PRLTAO56, 889 (1986).en_US
dc.identifier.citedreferenceD. P. Adams, S. M. Yalisove, and D.J. Eaglesham, Appl. Phys. Lett. APPLAB63, 3571 (1993).en_US
dc.identifier.citedreferenceD. P. Adams and S. M. Yalisove, J. Appl. Phys. JAPIAU76, 5185 (1994).en_US
dc.identifier.citedreferenceD. J. Eaglesham, J. Appl. Phys. JAPIAU77, 3597 (1995).en_US
dc.identifier.citedreferenceD. J. Eaglesham, H.-J. Gossman, and M. Cerullo, Phys. Rev. Lett. PRLTAO65, 1227 (1990).en_US
dc.identifier.citedreferenceM. V. Ramana Murty and H. A. Atwater, Phys. Rev. B PRBMDO49, 8483 (1994).en_US
dc.identifier.citedreferenceJ. Chevrier, A. Cruz, N. Pinto, I. Berbezier, and J. Derrien, J. Phys. (France) I JPGCE84, 1309 (1994).en_US
dc.identifier.citedreferenceThe contrast of twins and stacking faults obscures the contrast of the Ge marker layers and hinders TEM analysis of surface roughness.en_US
dc.identifier.citedreferenceM. C. Tringides and M. G. Lagally, Reflection High Energy Electron Diffraction and Reflection Electron Imaging of Surfaces, edited by P. K. Larsen and P. J. Dobson, Nato Series (Plenum, New York, 1988).en_US
dc.identifier.citedreferenceJ. M. Van Hove, P. Pukite, P. I. Cohen, and C. S. Lent, J. Vac. Sci. Technol. A JVTAD61, 609 (1983).en_US
dc.identifier.citedreferenceN. Masud and J. B. Pendry, J. Phys. C JPSOAW9, 1833 (1976).en_US
dc.identifier.citedreferenceA. Ishizaka and Y. Shiraki, J. Electrochem. Soc. JESOAN133, 66 (1986).en_US
dc.identifier.citedreferenceD. Barlett, C. W. Snyder, B. G. Orr, and R. Clarke, Rev. Sci. Instrum. RSINAK62, 1263 (1991).en_US
dc.identifier.citedreferenceThe kinematic condition is a form of ZZ-contrast. S. J. Pennycook and D. E. Jesson, Phys. Rev. Lett. PRLTAO64, 938 (1990).en_US
dc.identifier.citedreferenceJ. E. Mahan, K. M. Geib, G. Y. Robinson, and R. G. Long, J. Vac. Sci. Technol. A JVTAD68, 3692 (1990).en_US
dc.identifier.citedreferenceG. Ehrlich and F. G. Hudda, J. Chem. Phys. JCPSA644, 1039 (1966).en_US
dc.identifier.citedreferenceJ. Tersoff, A. W. Deneir van der Gon, and R. M. Tromp, Phys. Rev. Lett. PRLTAO72, 266 (1994).en_US
dc.identifier.citedreferenceB. S. Swartzentruber, Phys. Rev. Lett. PRLTAO76, 459 (1996).en_US
dc.identifier.citedreferenceJ. E. Vasek, Z. Zhang, C. T. Salling, and M. G. Lagally, Phys. Rev. B PRBMDO51, 17 207 (1995).en_US
dc.identifier.citedreferenceJ. J. Boland, Surf. Sci. SUSCAS244, 1 (1991).en_US
dc.identifier.citedreferenceM. Copel and R. M. Tromp, Phys. Rev. Lett. PRLTAO72, 1236 (1994).en_US
dc.identifier.citedreferenceB. E. Weir, B. S. Freer, R. L. Headrick, D. J. Eaglesham, G. H. Gilmer, J. Bevk, and L. C. Feldman, Appl. Phys. Lett. APPLAB59, 204 (1991).en_US
dc.identifier.citedreferenceD. J. Eaglesham, A. E. White, L. C. Feldman, N. Moriya, and D. C. Jacobson, Phys. Rev. Lett. PRLTAO70, 1643 (1993).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.