Show simple item record

Growth anisotropy and self-shadowing: A model for the development of in-plane texture during polycrystalline thin-film growth

dc.contributor.authorKarpenko, O. P.en_US
dc.contributor.authorBilello, John C.en_US
dc.contributor.authorYalisove, Steven M.en_US
dc.date.accessioned2010-05-06T23:05:49Z
dc.date.available2010-05-06T23:05:49Z
dc.date.issued1997-08-01en_US
dc.identifier.citationKarpenko, O. P.; Bilello, J. C.; Yalisove, S. M. (1997). "Growth anisotropy and self-shadowing: A model for the development of in-plane texture during polycrystalline thin-film growth." Journal of Applied Physics 82(3): 1397-1403. <http://hdl.handle.net/2027.42/71031>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71031
dc.description.abstractThe development of a preferred crystallographic orientation in the plane of growth, an in-plane texture, is addressed in a model that incorporates anisotropic growth rates of a material and self-shadowing. Most crystalline materials exhibit fast growth along certain crystallographic directions and slow growth along others. This crystallographic growth anisotropy, which may be due to differences in surface free energy and surface diffusion, leads to the evolution of specific grain shapes in a material. In addition, self-shadowing due to an obliquely incident deposition flux leads to a variation in in-plane grain growth rates, where the “fast” growth direction is normal to the plane defined by the substrate normal and the incident flux direction. This geometric growth anisotropy leads to the formation of elongated grains in the plane of growth. Neither growth anisotropy alone can explain the development of an in-plane texture during polycrystalline thin-film growth. However, whenever both are present (i.e., oblique incidence deposition of anisotropic materials), an in-plane texture will develop. Grains that have “fast” crystallographic growth directions aligned with the “fast” geometric growth direction overgrow grains that do not exhibit this alignment. Furthermore, the rate of texturing increases with the degree of each anisotropy. This model was used to simulate in-plane texturing during thin-film deposition. The simulation results are in excellent quantitative agreement with recent experimental results concerning the development of in-plane texture in sputter deposited Mo films. © 1997 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent242407 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleGrowth anisotropy and self-shadowing: A model for the development of in-plane texture during polycrystalline thin-film growthen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109-2136en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71031/2/JAPIAU-82-3-1397-1.pdf
dc.identifier.doi10.1063/1.365916en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceR. M. Bradley, J. M. E. Harper, and D. A. Smith, J. Appl. Phys. JAPIAU60, 4160 (1986).en_US
dc.identifier.citedreferenceN. Sonnenberg, A. S. Longo, M. J. Cima, B. P. Chang, K. G. Ressler, P. C. McIntyre, and Y. P. Liu, J. Appl. Phys. JAPIAU74, 1027 (1993).en_US
dc.identifier.citedreferenceD. Dobrev, Thin Solid Films THSFAP92, 41 (1982); G. N. Van Wyk and H. J. Smith, Nucl. Instrum. Methods NUIMAL170, 433 (1980).en_US
dc.identifier.citedreferenceH. Windischmann, Crit. Rev. Solid State Mater. Sci. CCRSDA17, 547 (1992).en_US
dc.identifier.citedreferenceA. K. Malhotra, S. M. Yalisove, and J. C. Bilello, Thin Solid Films THSFAP286, 196 (1997).en_US
dc.identifier.citedreferenceO. P. Karpenko, J. C. Bilello, and S. M. Yalisove, J. Appl. Phys. JAPIAU76, 4610 (1994).en_US
dc.identifier.citedreferenceO. P. Karpenko, Z. U. Rek, S. M. Yalisove, and J. C. Bilello (unpublished).en_US
dc.identifier.citedreferenceD. O. Smith, M. S. Cohen, and G. P. Weiss, J. Appl. Phys. JAPIAU31, 1755 (1960).en_US
dc.identifier.citedreferenceA. G. Dirks and H. J. Leamy, Thin Solid Films THSFAP47, 219 (1977).en_US
dc.identifier.citedreferenceH. J. Leamy, G. H. Gilmer, and A. J. Dirks, Curr. Top. Mater. Sci. CTHSD26, 310 (1980).en_US
dc.identifier.citedreferenceA. Wucher and W. Reuter, J. Vac. Sci. Technol. A JVTAD66, 2316 (1988); T. Tsuge and S. Esho, J. Appl. Phys. JAPIAU52, 4391 (1981).en_US
dc.identifier.citedreferenceC. Herring, Phys. Rev. PHRVAO82, 87 (1951).en_US
dc.identifier.citedreferenceG. Ehrlich and F. G. Hudda, J. Chem. Phys. JCPSA644, 1039 (1966).en_US
dc.identifier.citedreferenceW. R. Graham and G. Ehrlich, Surf. Sci. SUSCAS45, 530 (1974).en_US
dc.identifier.citedreferenceG. L. Kellogg, Surf. Sci. Rep. SSREDI21, 1 (1994).en_US
dc.identifier.citedreferenceM. Horn-von Hoegen, M. Copel, J. C. Tsang, M. C. Reuter, and R. M. Tromp, Phys. Rev. B PRBMDO50, 10 811 (1994).en_US
dc.identifier.citedreferenceT. J. Vink and J. B. A. D. van Zon, J. Vac. Sci. Technol. A JVTAD69, 124 (1991).en_US
dc.identifier.citedreferenceD. P. Adams, L. J. Parfitt, J. C. Bilello, S. M. Yalisove, and Z. U. Rek, Thin Solid Films THSFAP266, 52 (1995).en_US
dc.identifier.citedreferenceR. W. Smith and D. J. Srolovitz, J. Appl. Phys. JAPIAU79, 1448 (1996); R. W. Smith, F. Yeng, and D. J. Srolovitz, Mater. Res. Soc. Symp. Proc. MRSPDH399, 371 (1996).en_US
dc.identifier.citedreferenceD. J. Kester and R. Messier, J. Mater. Res. JMREEE8, 1938 (1993).en_US
dc.identifier.citedreferenceH. Kataoka, J. A. Bain, S. Brennan, and B. M. Clemens, J. Appl. Phys. JAPIAU73, 7591 (1993).en_US
dc.identifier.citedreferenceM. W. Thompson, Philos. Mag. PHMAA418, 377 (1968).en_US
dc.identifier.citedreferenceN.-E. Lee, G. A. Tomasch, and J. E. Greene, Appl. Phys. Lett. APPLAB65, 1 (1994).en_US
dc.identifier.citedreferenceE. Chason (private communication).en_US
dc.identifier.citedreferenceJ. F. Whitacre, O. P. Karpenko, S. M. Yalisove, and J. C. Bilello (unpublished).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.