Show simple item record

Phase separation during film growth

dc.contributor.authorAtzmon, Michaelen_US
dc.contributor.authorKessler, David A.en_US
dc.contributor.authorSrolovitz, David J.en_US
dc.date.accessioned2010-05-06T23:18:31Z
dc.date.available2010-05-06T23:18:31Z
dc.date.issued1992-07-15en_US
dc.identifier.citationAtzmon, M.; Kessler, D. A.; Srolovitz, D. J. (1992). "Phase separation during film growth." Journal of Applied Physics 72(2): 442-446. <http://hdl.handle.net/2027.42/71165>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71165
dc.description.abstractA diffusion equation describing phase separation during co‐deposition of a binary alloy is derived, and solved in the limit of dominant surface diffusion. Linear stability analysis yields results similar to bulk spinodal decomposition, except that long, and possibly all, wavelength are stabilized. Decomposition into two phases is investigated by solving the diffusion equation for lamellar and cylindrical symmetry. For the lamellar geometry, typically observed for near‐equal volume fractions, the diffusion equation does not yield wavelength selection criteria. These can be obtained if free energy minimization is assumed. For the cylindrical geometry, solutions for small volume fractions yield domain dimensions proportional to the deposition‐rate dependent surface diffusion length.en_US
dc.format.extent3102 bytes
dc.format.extent656091 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titlePhase separation during film growthen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71165/2/JAPIAU-72-2-442-1.pdf
dc.identifier.doi10.1063/1.351872en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceR. W. Cahn and P. Haasen, Physical Metallurgy (North-Holland, Amsterdam, 1983).en_US
dc.identifier.citedreferenceD. J. Srolovitz, A. Mazor, and B. G. Bukiet, J. Vac. Sci. Technol. A 6, 2371 (1988).en_US
dc.identifier.citedreferenceJ. W. Cahn, Acta Metall. 7, 18 (1959).en_US
dc.identifier.citedreferenceJ. Cahn, Trans. AIME 242, 166 (1968); Acta Metall. 9, 795 (1961).en_US
dc.identifier.citedreferenceV. Zackay and H. Aaronson, Decomposition of Austenite by Diffusionat Processes (Interscience, New York, 1962).en_US
dc.identifier.citedreferenceL. D. Graham and R. W. Kraft, Trans. AIME 236, 94 (1966).en_US
dc.identifier.citedreferenceK. A. Jackson and J. D. Hunt, Trans. AIME 236, 1139 (1966).en_US
dc.identifier.citedreferenceD. A. Kessler and H. Levine, J. Cryst. Growth 94, 871 (1989).en_US
dc.identifier.citedreferenceC. V. Thompson, Acta Metall. 36, 2929 (1988).en_US
dc.identifier.citedreferenceH. A. Atwater and C. M. Yang, J. Appl. Phys. 67, 6202 (1990).en_US
dc.identifier.citedreference(a) M. Atzmon, C. D. Adams, Y.-T. Cheng, and D. J. Srolovitz, Mater. Res. Soc. Symp. Proc. 202, 143 (1991).(b) C. D. Adams, M. Atzmon, Y.-T. Cheng, and D. J. Srolovitz, J. Mater. Res. 7, 653 (1992).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.