Show simple item record

Palmitoylation Plays a Role in Targeting Vac8p to Specific Membrane Subdomains

dc.contributor.authorPeng, Yutianen_US
dc.contributor.authorTang, Fushengen_US
dc.contributor.authorWeisman, Lois S.en_US
dc.date.accessioned2010-06-01T18:25:36Z
dc.date.available2010-06-01T18:25:36Z
dc.date.issued2006-10en_US
dc.identifier.citationPeng, Yutian; Tang, Fusheng; Weisman, Lois S. (2006). "Palmitoylation Plays a Role in Targeting Vac8p to Specific Membrane Subdomains." Traffic 7(10): 1378-1387. <http://hdl.handle.net/2027.42/71634>en_US
dc.identifier.issn1398-9219en_US
dc.identifier.issn1600-0854en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71634
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16978392&dopt=citationen_US
dc.format.extent858126 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2006 The Authors Journal compilationen_US
dc.subject.otherMembrane Subdomainen_US
dc.subject.otherOrganelle Inheritanceen_US
dc.subject.otherPalmitoylationen_US
dc.subject.otherVac8pen_US
dc.subject.otherYeasten_US
dc.titlePalmitoylation Plays a Role in Targeting Vac8p to Specific Membrane Subdomainsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Cell & Developmental Biology, Life Sciences Institute, 210 Washtenaw Avenue, Room 6437, University of Michigan, Ann Arbor, MI 48109-2216, USAen_US
dc.contributor.affiliationotherDepartment of Biochemistry, University of Iowa, Iowa City, IA 52242, USAen_US
dc.contributor.affiliationotherCurrent address: Department of Biology, University of Arkansas, Little Rock, AR 72204-1099, USAen_US
dc.identifier.pmid16978392en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71634/1/j.1600-0854.2006.00472.x.pdf
dc.identifier.doi10.1111/j.1600-0854.2006.00472.xen_US
dc.identifier.sourceTrafficen_US
dc.identifier.citedreferenceWeisman LS. Yeast vacuole inheritance and dynamics. Annu Rev Genet 2003; 37: 435 – 460.en_US
dc.identifier.citedreferenceHill KL, Catlett NL, Weisman LS. Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae. J Cell Biol 1996; 135: 1535 – 1549.en_US
dc.identifier.citedreferenceCatlett NL, Duex JE, Tang F, Weisman LS. Two distinct regions in a yeast myosin-V tail domain are required for the movement of different cargoes. J Cell Biol 2000; 150: 513 – 526.en_US
dc.identifier.citedreferenceCatlett NL, Weisman LS. The terminal tail region of a yeast myosin-V mediates its attachment to vacuole membranes and sites of polarized growth. Proc Natl Acad Sci U S A 1998; 95: 14799 – 14804.en_US
dc.identifier.citedreferenceIshikawa K, Catlett NL, Novak JL, Tang F, Nau JJ, Weisman LS. Identification of an organelle-specific myosin V receptor. J Cell Biol 2003; 160: 887 – 897.en_US
dc.identifier.citedreferenceTang F, Kauffman EJ, Novak JL, Nau JJ, Catlett NL, Weisman LS. Regulated degradation of a class V myosin receptor directs movement of the yeast vacuole. Nature 2003; 422: 87 – 92.en_US
dc.identifier.citedreferencePruyne D, Legesse-Miller A, Gao L, Dong Y, Bretscher A. Mechanisms of polarized growth and organelle segregation in yeast. Annu Rev Cell Dev Biol 2004; 20: 559 – 591.en_US
dc.identifier.citedreferencePashkova NJ, Jin Y, Ramaswamy S, Weisman LS. Structural basis for myosin V discrimination between distinct cargoes. Embo J 2006; 25: 693 – 700.en_US
dc.identifier.citedreferenceFleckenstein D, Rohde M, Klionsky DJ, Rudiger M. Yel013p (Vac8p), an armadillo repeat protein related to plakoglobin and importin alpha is associated with the yeast vacuole membrane. J Cell Sci 1998; 111: 3109 – 3118.en_US
dc.identifier.citedreferencePan X, Goldfarb DS. YEB3/VAC8 encodes a myristylated armadillo protein of the Saccharomyces cerevisiae vacuolar membrane that functions in vacuole fusion and inheritance. J Cell Sci 1998; 111: 2137 – 2147.en_US
dc.identifier.citedreferenceWang YX, Catlett NL, Weisman LS. Vac8p, a vacuolar protein with armadillo repeats, functions in both vacuole inheritance and protein targeting from the cytoplasm to vacuole. J Cell Biol 1998; 140: 1063 – 1074.en_US
dc.identifier.citedreferenceVeit M, Laage R, Dietrich L, Wang L, Ungermann C. Vac8p release from the SNARE complex and its palmitoylation are coupled and essential for vacuole fusion. Embo J 2001; 20: 3145 – 3155.en_US
dc.identifier.citedreferenceWang YX, Kauffman EJ, Duex JE, Weisman LS. Fusion of docked membranes requires the armadillo repeat protein Vac8p. J Biol Chem 2001; 276: 35133 – 35140.en_US
dc.identifier.citedreferenceWang L, Seeley ES, Wickner W, Merz AJ. Vacuole fusion at a ring of vertex docking sites leaves membrane fragments within the organelle. Cell 2002; 108: 357 – 369.en_US
dc.identifier.citedreferenceScott SV, Nice DC III, Nau JJ, Weisman LS, Kamada Y, Keizer-Gunnink I, Funakoshi T, Veenhuis M, Ohsumi Y, Klionsky DJ. Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting. J Biol Chem 2000; 275: 25840 – 25849.en_US
dc.identifier.citedreferencePan X, Roberts P, Chen Y, Kvam E, Shulga N, Huang K, Lemmon S, Goldfarb DS. Nucleus-vacuole junctions in Saccharomyces cerevisiae are formed through the direct interaction of Vac8p with Nvj1p. Mol Biol Cell 2000; 11: 2445 – 2457.en_US
dc.identifier.citedreferenceTang F, Peng Y, Nau JJ, Kauffman EJ, Weisman LS. Vac8p, an armadillo repeat protein, coordinates vacuole inheritance with multiple vacuolar processes. Traffic 2006; Epub ahead of print. PMID:16824055.en_US
dc.identifier.citedreferenceLinder ME, Deschenes RJ. New insights into the mechanisms of protein palmitoylation. Biochemistry 2003; 42: 4311 – 4320.en_US
dc.identifier.citedreferenceSmotrys JE, Linder ME. Palmitoylation of intracellular signaling proteins: regulation and function. Annu Rev Biochem 2004; 73: 559 – 587.en_US
dc.identifier.citedreferenceel-Husseini Ael D, Bredt DS. Protein palmitoylation: a regulator of neuronal development and function. Nat Rev Neurosci 2002; 3: 791 – 802.en_US
dc.identifier.citedreferencePatterson SI. Posttranslational protein S-palmitoylation and the compartmentalization of signaling molecules in neurons. Biol Res 2002; 35: 139 – 150.en_US
dc.identifier.citedreferenceBijlmakers MJ, Marsh M. The on-off story of protein palmitoylation. Trends Cell Biol 2003; 13: 32 – 42.en_US
dc.identifier.citedreferenceBijlmakers MJ, Isobe-Nakamura M, Ruddock LJ, Marsh M. Intrinsic signals in the unique domain target p56(lck) to the plasma membrane independently of CD4. J Cell Biol 1997; 137: 1029 – 1040.en_US
dc.identifier.citedreferenceEl-Husseini Ael D, Craven SE, Brock SC, Bredt DS. Polarized targeting of peripheral membrane proteins in neurons. J Biol Chem 2001; 276: 44984 – 44992.en_US
dc.identifier.citedreferenceRoth AF, Wan J, Bailey AO, Sun B, Kuchar JA, Green WN, Phinney BS, Yates JR III, Davis NG. Global analysis of protein palmitoylation in yeast. Cell 2006; 125: 1003 – 1013.en_US
dc.identifier.citedreferenceSubramanian K, Dietrich LE, Hou H, Lagrassa TJ, Meiringer CT, Ungermann C. Palmitoylation determines the function of Vac8 at the yeast vacuole. J Cell Sci 2006; 119: 2477 – 2485.en_US
dc.identifier.citedreferenceRoberts P, Moshitch-Moshkovitz S, Kvam E, O’Toole E, Winey M, Goldfarb DS. Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol Biol Cell 2003; 14: 129 – 141.en_US
dc.identifier.citedreferenceBagnat M, Chang A, Simons K. Plasma membrane proton ATPase Pma1p requires raft association for surface delivery in yeast. Mol Biol Cell 2001; 12: 4129 – 4138.en_US
dc.identifier.citedreferenceSeeley ES, Kato M, Margolis N, Wickner W, Eitzen G. Genomic analysis of homotypic vacuole fusion. Mol Biol Cell 2002; 13: 782 – 794.en_US
dc.identifier.citedreferenceFratti RA, Jun Y, Merz AJ, Margolis N, Wickner W. Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. J Cell Biol 2004; 167: 1087 – 1098.en_US
dc.identifier.citedreferenceChamberlain LH. Detergents as tools for the purification and classification of lipid rafts. FEBS Lett 2004; 559: 1 – 5.en_US
dc.identifier.citedreferenceLucero HA, Robbins PW. Lipid rafts-protein association and the regulation of protein activity. Arch Biochem Biophys 2004; 426: 208 – 224.en_US
dc.identifier.citedreferenceSchuck S, Honsho M, Ekroos K, Shevchenko A, Simons K. Resistance of cell membranes to different detergents. Proc Natl Acad Sci U S A 2003; 100: 5795 – 5800.en_US
dc.identifier.citedreferenceVetrivel KS, Cheng H, Lin W, Sakurai T, Li T, Nukina N, Wong PC, Xu H, Thinakaran G. Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes. J Biol Chem 2004; 279: 44945 – 44954.en_US
dc.identifier.citedreferencePeng Y, Akmentin W, Connelly MA, Lund-Katz S, Phillips MC, Williams DL. Scavenger receptor BI (SR-BI) clustered on microvillar extensions suggests that this plasma membrane domain is a way station for cholesterol trafficking between cells and high-density lipoprotein. Mol Biol Cell 2004; 15: 384 – 396.en_US
dc.identifier.citedreferenceDrevot P, Langlet C, Guo XJ, Bernard AM, Colard O, Chauvin JP, Lasserre R, He HT. TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. Embo J 2002; 21: 1899 – 1908.en_US
dc.identifier.citedreferenceRoper K, Corbeil D, Huttner WB. Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol 2000; 2: 582 – 592.en_US
dc.identifier.citedreferenceKato M, Wickner W. Ergosterol is required for the Sec18/ATP-dependent priming step of homotypic vacuole fusion. Embo J 2001; 20: 4035 – 4040.en_US
dc.identifier.citedreferenceTedrick K, Trischuk T, Lehner R, Eitzen G. Enhanced membrane fusion in sterol-enriched vacuoles bypasses the Vrp1p requirement. Mol Biol Cell 2004; 15: 4609 – 4621.en_US
dc.identifier.citedreferenceBeh CT, Rine J. A role for yeast oxysterol-binding protein homologs in endocytosis and in the maintenance of intracellular sterol-lipid distribution. J Cell Sci 2004; 117: 2983 – 2996.en_US
dc.identifier.citedreferenceBagnat M, Keranen S, Shevchenko A, Simons K. Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc Natl Acad Sci U S A 2000; 97: 3254 – 3259.en_US
dc.identifier.citedreferenceGkantiragas I, Brugger B, Stuven E, Kaloyanova D, Li XY, Lohr K, Lottspeich F, Wieland FT, Helms JB. Sphingomyelin-enriched microdomains at the Golgi complex. Mol Biol Cell 2001; 12: 1819 – 1833.en_US
dc.identifier.citedreferenceSevlever D, Pickett S, Mann KJ, Sambamurti K, Medof ME, Rosenberry TL. Glycosylphosphatidylinositol-anchor intermediates associate with triton-insoluble membranes in subcellular compartments that include the endoplasmic reticulum. Biochem J 1999; 343: 627 – 635.en_US
dc.identifier.citedreferenceBonangelino CJ, Catlett NL, Weisman LS. Vac7p, a novel vacuolar protein, is required for normal vacuole inheritance and morphology. Mol Cell Biol 1997; 17: 6847 – 6858.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.