Show simple item record

Cohesive-zone modelling of the deformation and fracture of spot-welded joints

dc.contributor.authorCavalli, M. N.en_US
dc.contributor.authorThouless, Michael D.en_US
dc.contributor.authorYang, Q. D.en_US
dc.date.accessioned2010-06-01T20:03:40Z
dc.date.available2010-06-01T20:03:40Z
dc.date.issued2005-10en_US
dc.identifier.citationCAVALLI, M. N.; THOULESS, M. D.; YANG, Q. D. (2005). "Cohesive-zone modelling of the deformation and fracture of spot-welded joints." Fatigue & Fracture of Engineering Materials & Structures 28(10): 861-874. <http://hdl.handle.net/2027.42/73187>en_US
dc.identifier.issn8756-758Xen_US
dc.identifier.issn1460-2695en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73187
dc.description.abstractThe deformation and failure of spot-welded joints have been successfully modelled using a cohesive-zone model for fracture. This has been accomplished by implementing a user-defined, three-dimensional, cohesive-zone element within a commercial finite-element package. The model requires two material parameters for each mode of deformation. Results show that the material parameters from this type of approach are transferable for identical spot welds in different geometries where a single parameter (such as maximum stress) is not. The approach has been demonstrated using a model system consisting of spot-welded joints made from 5754 aluminium sheets. The techniques for determining the cohesive fracture parameters for both nugget fracture and nugget pullout are described in this paper. It has been demonstrated that once the appropriate cohesive parameters for a weld are determined, quantitative predictions can be developed for the strengths, deformations and failure mechanisms of different geometries with nominally identical welds.en_US
dc.format.extent466613 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2005 Blackwell Publishing Ltd.en_US
dc.subject.otherCohesive-zone Modellingen_US
dc.subject.otherFinite Element Modellingen_US
dc.subject.otherFractureen_US
dc.subject.otherResistance Spot-weldingen_US
dc.titleCohesive-zone modelling of the deformation and fracture of spot-welded jointsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationotherDepartment of Mechanical Engineering, University of North Dakota, Grand Forks, ND 58202-8359en_US
dc.contributor.affiliationotherDepartment of Mechanical Engineeringen_US
dc.contributor.affiliationotherRockwell Scientific Company, Thousand Oaks, CA, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73187/1/j.1460-2695.2005.00919.x.pdf
dc.identifier.doi10.1111/j.1460-2695.2005.00919.xen_US
dc.identifier.sourceFatigue & Fracture of Engineering Materials & Structuresen_US
dc.identifier.citedreferenceSatoh, T., Abe, H., Nishikawa, K. and Morita, M. ( 1991 ) On three-dimensional elastic-plastic stress analysis of spot-welded joint under tensile shear load. Trans. Jpn Weld. Soc. 22, 46 – 51.en_US
dc.identifier.citedreferenceChang, B. H., Shi, Y. W., Dong, S. J. ( 1999 ) Comparative studies on stresses in weldbonded, spot-welded and adhesive bonded joints. J. Mater. Process. Technol. 87, 230 – 236.en_US
dc.identifier.citedreferenceDeng, X., Chen, W. and Shi, G. ( 2000 ) Three-dimensional finite element analysis of the mechanical behavior of spot-welds. Finite Elem. Anal. Des. 35, 17 – 39.en_US
dc.identifier.citedreferenceLee, Y. L., Wehner, T. J., Lu, M. W., Morrissett, T. W. and Pakalnins, E. ( 1998 ) Ultimate strength of resistance spot-welds subjected to combined tension and shear. J. Test. Eval. 26, 213 – 219.en_US
dc.identifier.citedreferenceLin, S. H., Pan, J., Wu, S. R., Tyan, T. and Wung, P. ( 2001 ) Failure loads of spot-welds under combined opening and shear static loading conditions. Int. J. Solids Struct. 39, 19 – 39.en_US
dc.identifier.citedreferenceWung, P. ( 2001 ) A force-based failure criterion for spot-weld design. Exp. Mech. 41, 107 – 113.en_US
dc.identifier.citedreferenceWung, P., Walsh, T., Ourchane, A., Stewart, W. and Jie, M. ( 2001 ) Failure of spot welds under in-plane static loading. Exp. Mech. 41, 100 – 106.en_US
dc.identifier.citedreferenceYang, Q. D., Thouless, M. D. and Ward, S. M. ( 1999 ) Numerical simulation of adhesively bonded beams failing with extensive plastic deformation. J. Mech. Phys. Solids 47, 1337 – 1353.en_US
dc.identifier.citedreferenceYang, Q. D., Thouless, M. D. and Ward, S. M. ( 2000 ) Analysis of the symmetrical 90°—Peel test with extensive plastic deformation. J. Adhes. 72, 115 – 132.en_US
dc.identifier.citedreferenceYang, Q. D., Thouless, M. D. and Ward, S. M. ( 2001 ) Elastic-plastic mode-II fracture of adhesive joints. Int. J. Solids Struct. 38, 3251 – 3262.en_US
dc.identifier.citedreferenceYang, Q. D. and Thouless, M. D. ( 2001 ) Mixed-mode fracture analysis of plastically deforming adhesive joints. Int. J. Fract. 110, 175 – 187.en_US
dc.identifier.citedreferenceKafkalidis, M. S. and Thouless, M. D. ( 2002 ) The effects of geometry and material properties on the fracture of single lap-shear joints. Int. J. Solids Struct. 39, 4367 – 4383.en_US
dc.identifier.citedreferenceNeedleman, A. ( 1987 ) A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54, 525 – 531.en_US
dc.identifier.citedreferenceTvergaard, V. and Hutchinson, J. W. ( 1992 ) The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J. Mech. Phys. Solids 40, 1377 – 1397.en_US
dc.identifier.citedreferenceTvergaard, V. and Hutchinson, J. W. ( 1996 ) On the toughness of ductile adhesive joints. J. Mech. Phys. Solids 44, 789 – 800.en_US
dc.identifier.citedreferenceRoychowdhury, S., Arun Roy, Y. D. and Dodds RH, Jr. ( 2002 ) Ductile tearing in thin aluminum panels: Experiments and analyses using large-displacement, 3-D surface cohesive elements. Engng Fract. Mech. 69, 983 – 1002.en_US
dc.identifier.citedreferenceCavalli, M. N. ( 2003 ) Cohesive Zone Modeling of Structural Joint Failure. Ph.D. Thesis, University of Michigan, Ann Arbor, USA.en_US
dc.identifier.citedreferenceZuniga, S. M. and Sheppard, S. D. ( 1995 ) Determining the constitutive properties of the heat-affected zone in a resistance spot-weld. Model. Simul. Mater. Sci. Engng 3, 391 – 416.en_US
dc.identifier.citedreferenceBringas, H. E. ( 1999 ) CASTI Metals Red Book, Nonferrous Metals, 2nd ed. Edmonton, Alberta, Canada.en_US
dc.identifier.citedreferenceSun, X. and Dong, P. ( 2000 ) Analysis of aluminum resistance spot-welding process using coupled finite element procedures. Weld. J. 79, 215s – 221s.en_US
dc.identifier.citedreference21   Standard E8M-99 ( 1999 ) Standard Test Method for Tension Testing of Metallic Materials [Metric]. American Society for Testing and Mateirals, USA.en_US
dc.identifier.citedreferenceBanks-Sills, L. D. and Sherman, D. ( 1991 ) J -II fracture testing of a plastically deforming material. Int. J. Fract. 50, 15 – 26.en_US
dc.identifier.citedreferenceCowie, J. G. and Tuler, F. R. ( 1991 ) Comparison of shear and tensile fracture in high strength aluminum alloys. Int. J. Fract. 47, 229 – 239.en_US
dc.identifier.citedreferenceDavis, J. R., ed. ( 1994 ) ASM Specialty Handbook: Aluminum and Aluminum Alloys. ASM International, Material Park, USA, 680.en_US
dc.identifier.citedreferenceHolt, J. M. and Ho, C. Y., eds ( 1994 ) Structural Alloys Handbook. CINDAS/Purdue University, West Lafayette, USA.en_US
dc.identifier.citedreference26   Standard AWS C1.4M ( 1999 ) Specification for Resistance Welding of Carbon and Low-Alloy Steels. American Welding Society, USA.en_US
dc.identifier.citedreferenceCavalli, M. N., Thouless, M. D. and Yang, Q. D. ( 2004 ) Cohesive-zone modeling of the deformation and fracture of weld-bonded joints. Weld. J. 83, 133s – 139s.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.