Show simple item record

Approaching the Molecular Mechanism of Autophagy

dc.contributor.authorKlionsky, Daniel J.en_US
dc.contributor.authorStromhaug, Per E.en_US
dc.date.accessioned2010-06-01T20:22:06Z
dc.date.available2010-06-01T20:22:06Z
dc.date.issued2001-08en_US
dc.identifier.citationStromhaug, Per E.; Klionsky, Daniel J. (2001). "Approaching the Molecular Mechanism of Autophagy." Traffic 2(8): 524-531. <http://hdl.handle.net/2027.42/73484>en_US
dc.identifier.issn1398-9219en_US
dc.identifier.issn1600-0854en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73484
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11489210&dopt=citationen_US
dc.format.extent270693 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherMunksgaard International Publishersen_US
dc.publisherBlackwell Publishing Ltden_US
dc.rightsMunksgaarden_US
dc.subject.otherAutophagyen_US
dc.subject.otherCytoplasm to Vacuole Targetingen_US
dc.subject.otherDegradationen_US
dc.subject.otherLysosomeen_US
dc.subject.otherPexophagyen_US
dc.subject.otherVacuoleen_US
dc.subject.otherYeasten_US
dc.titleApproaching the Molecular Mechanism of Autophagyen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biology, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.identifier.pmid11489210en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73484/1/j.1600-0854.2001.20802.x.pdf
dc.identifier.doi10.1034/j.1600-0854.2001.20802.xen_US
dc.identifier.sourceTrafficen_US
dc.identifier.citedreferenceFengsrud M, Erichsen ES, Berg TO, Raiborg C, Seglen PO. Ultrastructural characterization of the delimiting membranes of isolated autophagosomes and amphisomes by freeze-fracture electron microscopy. Eur J Cell Biol 2000; 79: 871 – 882.en_US
dc.identifier.citedreferenceBaba M, Osumi M, Ohsumi Y. Analysis of the membrane structures involved in autophagy in yeast by freeze-replica method. Cell Struct Funct 1995; 20: 465 – 471.en_US
dc.identifier.citedreferenceKiel JAKW, Rechinger KB, Van der Klei IJ, Salomons FA, Titorenko VI, Veenhuis M. The Hansenula polymorpha PDD1 gene product, essential for the selective degradation of peroxisomes, is a homologue of Saccharomyces cerevisiae Vps34p. Yeast 1999; 15: 741 – 754.en_US
dc.identifier.citedreferenceHutchins MU, Veenhuis M, Klionsky DJ. Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway. J Cell Sci 1999; 112: 4079 – 4087.en_US
dc.identifier.citedreferenceSakai Y, Koller A, Rangell LK, Keller GA, Subramani S. Peroxisome degradation by microautophagy in Pichia pastoris. Identification of specific steps and morphological intermediates. J Cell Biol 1998; 141: 625 – 636.en_US
dc.identifier.citedreferenceYuan W, Stromhaug PE, Dunn WA Jr. Glucose-induced autophagy of peroxisomes in Pichia pastoris requires a unique E1-like protein. Mol Biol Cell 1999; 10: 1353 – 1366.en_US
dc.identifier.citedreferenceKim J, Kamada Y, Stromhaug PE, Guan J, Hefner-Gravink A, Baba M, Scott SV, Ohsumi Y, Dunn WA, Klionsky DJ. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J Cell Biol 2001; 153: 381 – 396.en_US
dc.identifier.citedreferenceScott SV, Guan J, Hutchins MU, Kim J, Klionsky DJ. Cvt19 is a receptor for the cytoplasm to vacuole targeting pathway. Mol Cell 2001; in press.en_US
dc.identifier.citedreferenceHutchins MU & Klionsky DJ. Vacuolar localization of oligomeric α-mannosidase requires the cytoplasm to vacuole targeting and autophagy pathway components in Saccharomyces cerevisiae. J Biol Chem 2001; 276: 20491 – 20498.en_US
dc.identifier.citedreferenceScott S, Nice D, Nau J, Weisman L, Kamada Y, Keizer-Gunnink I, Funakoshi T, Veenhuis M, Ohsumi Y, Klionsky DJ. Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting. J Biol Chem 2000; 275: 25840 – 25849.en_US
dc.identifier.citedreferenceCuervo AM & Dice JF. Lysosomes, a meeting point of proteins, chaperones, and proteases. J Mol Med 1998; 76: 6 – 12.en_US
dc.identifier.citedreferenceHorst M, Knecht EC, Schu PV. Import into and degradation of cytosolic proteins by isolated yeast vacuoles. Mol Biol Cell 1999; 10: 2879 – 2889.en_US
dc.identifier.citedreferenceBrown CR, McCann JA, Chiang HL. The heat shock protein Ssa2p is required for import of fructose-1, 6-bisphosphatase into Vid vesicles. J Cell Biol 2000; 150: 65 – 76.en_US
dc.identifier.citedreferenceShieh HL, Chen Y, Brown CR, Chiang HL. Biochemical analysis of fructose-1,6-bisphosphatase import into vacuole import and degradation vesicles reveals a role for UBC1 in vesicle biogenesis. J Biol Chem 2001; 276: 10398 – 10406.en_US
dc.identifier.citedreferenceSattler T & Mayer A. Cell-free reconstitution of microautophagic vacuole invagination and vesicle formation. J Cell Biol 2000; 151: 529 – 538.en_US
dc.identifier.citedreferenceMuller O, Sattler T, Flotenmeyer M, Schwarz H, Plattner H, Mayer A. Autophagic tubes. vacuolar invaginations involved in lateral membrane sorting and inverse vesicle budding. J Cell Biol 2000; 151: 519 – 528.en_US
dc.identifier.citedreferenceKim J & Klionsky DJ. Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem 2000; 69: 303 – 342.en_US
dc.identifier.citedreferenceSchmelzle T & Hall MN. TOR, a central controller of cell growth. Cell 2000; 103: 253 – 262.en_US
dc.identifier.citedreferenceOgier-Denis E, Pattingre S, El Benna J, Codogno P. Erk1/2-dependent phosphorylation of Gα-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J Biol Chem 2000; 275: 39090 – 39095.en_US
dc.identifier.citedreferencePetiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 2000; 275: 992 – 998.en_US
dc.identifier.citedreferenceBlommaart EFC, Krause U, Schellens JPM., H, Meijer, AJ. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem 1997; 243: 240 – 246.en_US
dc.identifier.citedreferenceKihara A, Noda T, Ishihara N, Ohsumi Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 2001; 152: 519 – 530.en_US
dc.identifier.citedreferenceLiang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402: 672 – 676.en_US
dc.identifier.citedreferenceKihara A, Kabeya Y, Ohsumi Y, Yoshimori T. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep 2001; 2: 330 – 335.en_US
dc.identifier.citedreferenceStasyk OV, van der Klei IJ, Bellu AR, Shen S, Kiel JA, Cregg JM, Veenhuis MA. Pichia pastoris VPS15 homologue is required in selective peroxisome autophagy. Curr Genet 1999; 36: 262 – 269.en_US
dc.identifier.citedreferenceKamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 2000; 150: 1507 – 1513.en_US
dc.identifier.citedreferenceTomoda T, Bhatt RS, Kuroyanagi H, Shirasawa T, Hatten ME. A mouse serine/threonine kinase homologous to C. elegans UNC51 functions in parallel fiber formation of cerebellar granule neurons. Neuron 1999; 24: 833 – 846.en_US
dc.identifier.citedreferenceOkazaki N, Yan J, Yuasa S, Ueno T, Kominami E, Masuho Y, Koga H, Muramatsu M. Interaction of the Unc-51-like kinase and microtubule-associated protein light chain 3 related proteins in the brain: possible role of vesicular transport in axonal elongation. Brain Res Mol Brain Res 2000; 85: 1 – 12.en_US
dc.identifier.citedreferenceMizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y. A protein conjugation system essential for autophagy. Nature 1998; 395: 395 – 398.en_US
dc.identifier.citedreferenceTanida I, Mizushima N, Kiyooka M, Ohsumi M, Ueno T, Ohsumi Y, Kominami E. Apg7p/Cvt2p: a novel protein-activating enzyme essential for autophagy. Mol Biol Cell 1999; 10: 1367 – 1379.en_US
dc.identifier.citedreferenceKim J, Dalton VM, Eggerton KP, Scott SV, Klionsky DJ. Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. Mol Biol Cell 1999; 10: 1337 – 1351.en_US
dc.identifier.citedreferenceKomatsu M, Tanida I, Ueno T, Ohsumi M, Ohsumi Y, Kominami E. The C-terminal region of an Apg7p/Cvt2p is required for homodimerization and is essential for its E1 activity and E1–E2 complex formation. J Biol Chem 2001; 276: 9846 – 9854.en_US
dc.identifier.citedreferenceShintani T, Mizushima N, Ogawa Y, Matsuura A, Noda T, Ohsumi Y. Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J 1999; 18: 5234 – 5241.en_US
dc.identifier.citedreferenceMizushima N, Noda T, Ohsumi Y. Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J 1999; 18: 3888 – 3896.en_US
dc.identifier.citedreferenceMizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 2001; 152: 657 – 667.en_US
dc.identifier.citedreferenceKirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, Noda T, Ohsumi Y. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol 1999; 147: 435 – 446.en_US
dc.identifier.citedreferenceHuang W-P, Scott SV, Kim J, Klionsky DJ. The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem 2000; 275: 5845 – 5851.en_US
dc.identifier.citedreferencePaz Y, Elazar Z, Fass D. Structure of GATE-16, membrane transport modulator and mammalian ortholog of autophagocytosis factor Aut7p. J Biol Chem 2000; 275: 25445 – 25450.en_US
dc.identifier.citedreferenceKirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 2000; 151: 263 – 276.en_US
dc.identifier.citedreferenceKim J, Huang W-P, Klionsky DJ. Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J Cell Biol 2001; 152: 51 – 64.en_US
dc.identifier.citedreferenceIchimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y. A ubiquitin-like system mediates protein lipidation. Nature 2000; 408: 488 – 492.en_US
dc.identifier.citedreferenceAbeliovich H, Dunn WA, Kim J, Klionsky DJ. Dissection of autophagosome biogenesis into distinct nucleation and expansion steps. J Cell Biol 2000; 151: 1025 – 1034.en_US
dc.identifier.citedreferenceChen L, Wang HB, Vicini S, Olsen RW. The γ-aminobutyric acid type A (GABA A ) receptor-associated protein (GABARAP) promotes GABA A receptor clustering and modulates the channel kinetics. Proc Natl Acad Sci USA 2000; 97: 11557 – 11562.en_US
dc.identifier.citedreferenceSagiv Y, Legesse-Miller A, Porat A, Elazar Z. GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J 2000; 19: 1494 – 1504.en_US
dc.identifier.citedreferenceLegesse-Miller A, Sagiv Y, Glozman R, Elazar Z. Aut7p, a soluble autophagic factor, participates in multiple membrane trafficking processes. J Biol Chem 2000; 275: 32966 – 32973.en_US
dc.identifier.citedreferenceKabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000; 19: 5720 – 5728.en_US
dc.identifier.citedreferenceTanida I, Tanida-Miyake E, Ueno T, Kominami E. The human homolog of Saccharomyces cerevisiae Apg7p is a protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem 2001; 276: 1701 – 1706.en_US
dc.identifier.citedreferenceAbeliovich H, Darsow T, Emr SD. Cytoplasm to vacuole trafficking of aminopeptidase I requires a t-SNARE-Sec1p complex composed of Tlg2p and Vps45p. EMBO J 1999; 18: 6005 – 6016.en_US
dc.identifier.citedreferenceTeter SA, Eggerton KP, Scott SV, Kim J, Fischer AM, Klionsky DJ. Degradation of lipid vesicles in the yeast vacuole requires function of Cvt17, a putative lipase. J Biol Chem 2001; 276: 2083 – 2087.en_US
dc.identifier.citedreferenceKlionsky DJ & Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 2000; 290: 1717 – 1721.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.