Show simple item record

Contrasting Alloreactive CD4 + and CD8 + T Cells: There's More to It Than MHC Restriction

dc.contributor.authorCsencsits, Keri L.en_US
dc.contributor.authorBishop, D. Keithen_US
dc.date.accessioned2010-06-01T20:35:26Z
dc.date.available2010-06-01T20:35:26Z
dc.date.issued2003-02en_US
dc.identifier.citationCsencsits, Keri L.; Bishop, D. Keith (2003). "Contrasting Alloreactive CD4 + and CD8 + T Cells: There's More to It Than MHC Restriction." American Journal of Transplantation 3(2): 107-115. <http://hdl.handle.net/2027.42/73698>en_US
dc.identifier.issn1600-6135en_US
dc.identifier.issn1600-6143en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73698
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12603205&dopt=citationen_US
dc.format.extent113757 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherMunksgaard International Publishersen_US
dc.publisherBlackwell Publishing Ltden_US
dc.rightsBlackwell Munksgaard, 2003en_US
dc.subject.otherCostimulation, Cytokines, T Cell Subsetsen_US
dc.titleContrasting Alloreactive CD4 + and CD8 + T Cells: There's More to It Than MHC Restrictionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum  Division of Transplantation, Section of General Surgery, Depajtment of Surgery University of Michigan School of Medicine, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationum  Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USAen_US
dc.identifier.pmid12603205en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73698/1/j.1600-6143.2003.00036.x.pdf
dc.identifier.doi10.1034/j.1600-6143.2003.00036.xen_US
dc.identifier.sourceAmerican Journal of Transplantationen_US
dc.identifier.citedreferenceCantor H, Boyse EA. Functional subclasses of T-lymphocytes bearing different Ly antigens. I. The generation of functionally distinct T-cell subclasses is a differentiative process independent of antigen. J Exp Med 1975; 141: 1376 – 1389.en_US
dc.identifier.citedreferenceCantor H, Boyse EA. Functional subclasses of T lymphocytes bearing different Ly antigens. II. Cooperation between subclasses of Ly+ cells in the generation of killer activity. J Exp Med 1975; 141: 1390 – 1399.en_US
dc.identifier.citedreferenceKelso A, MacDonald HR. Precursor frequency analysis of lymphokine-secreting alloreactive T lymphocytes. Dissociation of subsets producing interleukin 2, macrophage-activating factor, and granulocyte-macrophage colony-stimulating factor on the basis of Lyt-2 phenotype. J Exp Med 1982; 156: 1366 – 1379.en_US
dc.identifier.citedreferenceEngleman EG, Benike CJ, Grumet FC, Evans RL. Activation of human T lymphocyte subsets: helper and suppressor/cytotoxic T cells recognize and respond to distinct histocompatibility antigens. J Immunol 1981; 127: 2124 – 2129.en_US
dc.identifier.citedreferenceDialynas DP, Wilde DB, Marrack P et al. Characterization of the murine antigenic determinant, designated L3T4a, recognized by monoclonal antibody GK1.5: expression of L3T4a by functional T cell clones appears to correlate primarily with class II MHC antigen-reactivity. Immunol Rev 1983; 74: 29 – 56.en_US
dc.identifier.citedreferenceRavichandran KS, Pratt JC, Sawasdikosol S, Irie HY, Burakoff SJ. Coreceptors and adapter proteins in T-cell signaling. Ann N Y Acad Sci 1995; 766: 117 – 133.en_US
dc.identifier.citedreferenceJaneway CA, Jr. The T cell receptor as a multicomponent signalling machine: CD4/CD8 coreceptors and CD45 in T cell activation. Annu Rev Immunol 1992; 10: 645 – 674.en_US
dc.identifier.citedreferenceParnes JR. Molecular biology and function of CD4 and CD8. Adv Immunol 1989; 44: 265 – 311.en_US
dc.identifier.citedreferenceGuy-Grand D, Cerf-Bensussan N, Malissen B, Malassis-Seris BM, Briottet C, Vassalli P. Two gut epithelial CD8 + lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation. J Exp Med 1991; 173: 471 – 481.en_US
dc.identifier.citedreferenceLefancois L. Phenotypic complexity of intraepithelial lymphocytes of the small intestine. J Immunol 1991; 147: 1746 – 1751.en_US
dc.identifier.citedreferenceSinger AL, Koretzky GA. Control of T cell function by positive and negative regulators. Science 2002; 296: 1639 – 1640.en_US
dc.identifier.citedreferenceDornan S, Sebestyen Z, Gamble J et al. Differential association of CD45 isoforms with CD4 and CD8 regulates the actions of specific pools of p56 lck tyrosine kinase in T cell antigen receptor signal transduction. J Biol Chem 2002; 277: 1912 – 1918.en_US
dc.identifier.citedreferenceBachmann MF, Gallimore A, Linkert S et al. Developmental regulation of Lck targeting to the CD8 coreceptor controls signaling in naive and memory T cells. J Exp Med 1999; 189: 1521 – 1530.en_US
dc.identifier.citedreferenceViola A. The amplification of TCR signaling by dynamic membrane microdomains. Trends Immunol 2001; 22: 322 – 327.en_US
dc.identifier.citedreferenceArcaro A, GrÉgoire C, Bakker TR et al. CD8β endows CD8 with efficient coreceptor function by coupling T cell receptor/CD3 to raft-associated CD8/p56 lck complexes. J Exp Med 2001; 194: 1485 – 1495.en_US
dc.identifier.citedreferenceLee K-H, Holdorf AD, Dustin ML, Chan AC, Allen PM, Shaw AS. T cell receptor signaling precedes immunological synapse formation. Science 2002; 295: 1539 – 1542.en_US
dc.identifier.citedreferenceDavis DM. Assembly of the immunological synapse for T cells and NK cells. Trends Immunol 2002; 23: 356 – 363.en_US
dc.identifier.citedreferenceBishop DK, Shelby J, Eichwald EJ. Mobilization of T lymphocytes following cardiac transplantation: evidence that CD4 positive cells are required for cytotoxic T lymphocyte activation, inflammatory endothelial development, graft infiltration, and acute allograft rejection. Transplantation 1992; 53: 849 – 857.en_US
dc.identifier.citedreferenceVan Hoffen E, Van Wichen DF, Leemans JC et al. T cell apoptosis in human heajt allografts: association with lack of co-stimulation? Am J Pathol 1998; 153: 1813 – 1824.en_US
dc.identifier.citedreferenceMehal WZ, Juedes AE, Crispe IN. Selective retention of activated CD8 + T cells by the normal liver. J Immunol 1999; 163: 3202 – 3210.en_US
dc.identifier.citedreferenceHadley GA, Charandee C, Weir MR, Wang D, Bajtlett ST, Drachenberg CB. CD103+ CTL accumulate within the graft epithelium during clinical renal allograft rejection. Transplantation 2001; 72: 1548 – 1555.en_US
dc.identifier.citedreferenceFoulds KE, Zenewicz LA, Shedlock DJ, Jiang J, Troy AE, Shen H. Cutting edge: CD4 and CD8 T cells are intrinsically different in their proliferative responses. J Immunol 2002; 168: 1528 – 1532.en_US
dc.identifier.citedreferenceWong P, Pamer EG. Cutting edge: antigen-independent CD8 T cell proliferation. J Immunol 2001; 166: 5864 – 5868.en_US
dc.identifier.citedreferenceLertmemongkolchai G, Cai G, Hunter CA, Bancroft GJ. Bystander activation of CD8 + T cells contributes to the rapid production of IFN-γ in response to bacterial pathogens. J Immunol 2001; 166: 1097 – 1105.en_US
dc.identifier.citedreferenceFerreira C, Bajthlott T, Garcia S, Zamoyska R, Stockinger B. Differential survival of naÏve CD4 and CD8 T cells. J Immunol 2000; 165: 3689 – 3694.en_US
dc.identifier.citedreferenceHomann D, Teyton L, Oldstone MBA. Differential regulation of antiviral T-cell immunity results in stable CD8 + but declining CD4 + T-cell memory. Nat Med 2001; 7: 913 – 919.en_US
dc.identifier.citedreferenceGrayson JM, Zajac AJ, Altman JD, Ahmed R. Cutting edge. Increased expression of Bcl-2 in antigen-specific memory CD8 + T cells. J Immunol 2000; 164: 3950 – 3954.en_US
dc.identifier.citedreferenceGlasebrook AL, Fitch FW. Alloreactive cloned T cell lines. I. Interactions between cloned amplifier and cytolytic T cell lines. J Exp Med 1980; 151: 876 – 895.en_US
dc.identifier.citedreferenceKeene JA, Forman J. Helper activity is required for the in vivo generation of cytotoxic T lymphocytes. J Exp Med 1982; 155: 768 – 782.en_US
dc.identifier.citedreferenceRosenberg AS, Mizuochi T, Sharrow SO, Singer A. Phenotype, specificity, and function of T cell subsets and T cell interactions involved in skin allograft rejection. J Exp Med 1987; 165: 1296 – 1315.en_US
dc.identifier.citedreferenceBishop DK, Hinrichs DJ. Adoptive transfer of immunity to Listeria monocytogenes: the influence of in vitro stimulation on lymphocyte subset requirements. J Immunol 1987; 139: 2005 – 2009.en_US
dc.identifier.citedreferenceMiller BJ, Appel MC, O'Neil Wicker LS. Both Lyt-2+ and L3T4+ T cell subsets are required for the transfer of diabetes in nonobese diabetic mice. J Immunol 1988; 140: 52 – 58.en_US
dc.identifier.citedreferenceStohlman SA, Bergmann CC, Lin MT, Cua DJ, Hinton DR. CTL effector function within the central nervous system requires CD4 + T cells. J Immunol 1998; 160: 2896 – 2904.en_US
dc.identifier.citedreferenceSu HC, Cousens LP, Fast LD et al. CD4 + and CD8 + T cell interactions in IFN-γ and IL-4 responses to viral infections: requirements for IL-2. J Immunol 1998; 160: 5007 – 5017.en_US
dc.identifier.citedreferenceBennett SRM, Carbone FR, Karamalis F, Flavell RA, Miller JFAP, Heath WR. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 1998; 393: 478 – 480.en_US
dc.identifier.citedreferenceSchoenberger SP, Toes REM, van der Voort EIH, Offringa R, Melief CJM. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 1998; 393: 480 – 483.en_US
dc.identifier.citedreferenceKalams SA, Walker BD. The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J Exp Med 1998; 188: 2199 – 2204.en_US
dc.identifier.citedreferenceRosenberg AS, Singer A. Cellular basis of skin allograft rejection: an in vivo model of immune-mediated tissue destruction. Annu Rev Immunol 1992; 10: 333 – 358.en_US
dc.identifier.citedreferenceCobbold SP, Jayasuriya A, Nash A, Prospero TD, Waldmann H. Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature 1984; 312: 548 – 551.en_US
dc.identifier.citedreferenceShizuru JA, Gregory AK, Chao CT-B, Fathman CG. Islet allograft survival after a single course of treatment of recipient with antibody to L3T4. Science 1987; 237: 278 – 280.en_US
dc.identifier.citedreferenceShizuru JA, Seydel KB, Flavin TF et al. Induction of donor-specific unresponsiveness to cardiac allografts in rats by pretransplant anti-CD4 monoclonal antibody therapy. Transplantation 1990; 50: 366 – 373.en_US
dc.identifier.citedreferenceDarby CR, Morris PJ, Wood KJ. Evidence that long-term cardiac allograft survival induced by anti-CD4 monoclonal antibody does not require depletion of CD4 + T cells. Transplantation 1992; 54: 483 – 490.en_US
dc.identifier.citedreferenceBour H, Horvath C, Lurquin C, Cerottini J-C, MacDonald HR. Differential requirement for CD4 help in the development of an antigen-specific CD8 + T cell response depending on the route of immunization. J Immunol 1998; 160: 5522 – 5529.en_US
dc.identifier.citedreferenceWang B, Norbury CC, Greenwood R, Bennink JR, Yewdell JW, Frelinger JA. Multiple paths for activation of naÏve CD8 + T cells: CD4-independent help. J Immunol 2001; 167: 1283 – 1289.en_US
dc.identifier.citedreferenceMintern JD, Davey GM, Belz GT, Carbone FR, Heath WR. Cutting edge. Precursor frequency affects the helper dependence of cytotoxic T cells. J Immunol 2002; 168: 977 – 980.en_US
dc.identifier.citedreferenceHeath WR, Kjer-Nielsen L, Hoffmann MW. Avidity for antigen can influence the helper dependence of CD8 + T lymphocytes. J Immunol 1993; 151: 5993 – 6001.en_US
dc.identifier.citedreferenceXu H, Banerjee A, Dilulio NA, Fairchild RL. Development of effector CD8 + T cells in contact hypersensitivity occurs independently of CD4 + T cells. J Immunol 1997; 158: 4721 – 4728.en_US
dc.identifier.citedreferenceGraser RT, DiLorenzo TP, Wang F et al. Identification of a CD8 T cell that can independently mediate autoimmune diabetes development in the complete absence of CD4 T cell helper functions. J Immunol 2000; 164: 3913 – 3918.en_US
dc.identifier.citedreferenceYamazaki K, Nguyen T, Podack ER. Cutting edge: Tumor secreted heat shock-fusion protein elicits CD8 cells for rejection. J Immunol 1999; 163: 5178 – 5182.en_US
dc.identifier.citedreferenceYi S, Feng X, Hawthorne W, Patel A, Walters S, O'Connell PJ. CD8 + T cells are capable of rejecting pancreatic islet xenografts. Transplantation 2000; 70: 896 – 906.en_US
dc.identifier.citedreferenceBishop DK, Wood SC, Eichwald EJ, Orosz CG. Immunobiology of allograft rejection in the absence of IFN-γ: CD8 + effector cells develop independent of CD4 + cells and CD40 – CD40L interactions. J Immunol 2001; 166: 3248 – 3255.en_US
dc.identifier.citedreferenceNathan MJ, Yin D, Eichwald EJ, Bishop DK. The immunobiology of inductive anti-CD40L therapy in transplantation: allograft acceptance is not dependent upon the deletion of graft-reactive T cells. Am J Transplant 2002; 2: 323 – 332.en_US
dc.identifier.citedreferencePiccotti JR, Li K, Chan SY et al. Alloantigen-reactive Th1 helper development in IL-12 deficient mice. J Immunol 1998; 160: 1132 – 1138.en_US
dc.identifier.citedreferenceNewell KA, He G, Guo Z, Kim O, Szot GL, Rulifson I et al. Cutting edge: blockade of the CD28/B7 costimulatory pathway inhibits intestinal allograft rejection mediated by CD4 + but not CD8 + T cells. J Immunol 1999; 163: 2358 – 2362.en_US
dc.identifier.citedreferenceGuo Z, Wang J, Meng L et al. Cutting edge: membrane lymphotoxin regulates CD8 + T cell-mediated intestinal allograft rejection. J Immunol 2001; 167: 4796 – 4800.en_US
dc.identifier.citedreferenceTrambley J, Bingaman AW, Lin A et al. Asialo GM1+ CD8 + T cells play a critical role in costimulation blockade-resistant allograft rejection. J Clin Invest 1999; 104: 1715 – 1722.en_US
dc.identifier.citedreferenceWilliams MA, Trambley J, Ha J et al. Genetic characterization of strain differences in the ability to mediate CD40/CD28-independent rejection of skin allografts. J Immunol 2000; 165: 6849 – 6857.en_US
dc.identifier.citedreferenceBishop DK, Chan S, Li W, Ensley RD, Xu S, Eichwald EJ. CD4-positive helper T lymphocytes mediate mouse cardiac allograft rejection independent of donor alloantigen specific cytotoxic T lymphocytes. Transplantation 1993; 56: 892 – 897.en_US
dc.identifier.citedreferenceChan SY, DeBruyne LA, Goodman RE, Eichwald EJ, Bishop DK. In vivo depletion of CD8 positive T cells results in Th2 cytokine production and alternate mechanisms of allograft rejection. Transplantation 1995; 59: 1155 – 1161.en_US
dc.identifier.citedreferenceKrieger NR, Yin DP, Fathman CG. CD4 + but not CD8 + cells are essential for allorejection. J Exp Med 1996; 184: 2013 – 2018.en_US
dc.identifier.citedreferenceVanBuskirk AM, Wakely ME, Orosz CG. Acute rejection of cardiac allografts by noncytolytic CD4 + T cell populations. Transplantation 1996; 62: 300 – 302.en_US
dc.identifier.citedreferenceKrams SM, Hayashi M, Fox CK et al. CD8 + cells are not necessary for allograft rejection or the induction of apoptosis in an experimental model of small intestinal transplantation. J Immunol 1998; 160: 3673 – 3680.en_US
dc.identifier.citedreferenceVanBuskirk AM, Wakely ME, Orosz CG. Transfusion of polarized Th2-like cell populations into SCID mouse cardiac allograft recipients results in acute allograft rejection. Transplantation 1996; 62: 229 – 238.en_US
dc.identifier.citedreferenceNathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med 1983; 158: 670 – 689.en_US
dc.identifier.citedreferenceHalloran PF, Afrouzian M, Ramassar V et al. Interferon-γ acts directly on rejecting renal allografts to prevent graft necrosis. Am J Pathol 2001; 158: 215 – 226.en_US
dc.identifier.citedreferenceBraun MY, Desalle F, Le Moine A et al. IL-5 and eosinophils mediate the rejection of fully histoincompatible vascularized cardiac allografts: regulatory role of alloreactive CD8 + T lymphocytes and IFN-γ. Eur J Immunol 2000; 30: 1290 – 1296.en_US
dc.identifier.citedreferenceDelfs MW, Furukawa Y, Mitchell RN, Lichtman AH. CD8 + T cell subsets Tc1 and Tc2 cause different histopathologic forms of murine cardiac allograft rejection. Transplantation 2001; 71: 606 – 610.en_US
dc.identifier.citedreferenceGoldman M, Le Moine A, Braun M, Flamand V, Abramowicz D. A role for eosinophils in transplant rejection. Trends Immunol 2001; 22: 247 – 251.en_US
dc.identifier.citedreferenceLe Moine A, Flamand V, Demoor F-X et al. Critical roles for IL-4, IL-5, and eosinophils in chronic skin allograft rejection. J Clin Invest 1999; 103: 1659 – 1667.en_US
dc.identifier.citedreferencePiccotti JR, Chan SY, VanBuskirk AM, Eichwald EJ, Bishop DK. Are Th2 helper T lymphocytes beneficial, deleterious, or irrelevant in promoting allograft survival? Transplantation 1997; 63: 619 – 624.en_US
dc.identifier.citedreferenceWaldmann H, Cobbold S. Regulating the immune response to transplants: a role for CD4 + regulatory cells? Immunity 2001; 14: 399 – 406.en_US
dc.identifier.citedreferenceMosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136: 2348 – 2357.en_US
dc.identifier.citedreferenceRomagnani S. Human Th1 and Th2 subsets: doubt no more. Immunol Today 1991; 12: 256 – 257.en_US
dc.identifier.citedreferenceO'Garra A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 1998; 8: 275 – 283.en_US
dc.identifier.citedreferenceRengarajan J, Szabo SJ, Glimcher LH. Transcriptional regulation of Th1/Th2 polarization. Immunol Today 2000; 21: 479 – 483.en_US
dc.identifier.citedreferenceSeder RA, Le Gros GG. The functional role of CD8 + T helper type 2 cells. J Exp Med 1995; 181: 5 – 7.en_US
dc.identifier.citedreferenceZheng W-P, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997; 89: 587 – 596.en_US
dc.identifier.citedreferenceZhang D-H, Cohn L, Ray P, Bottomly K, Ray A. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem 1997; 272: 21597 – 21603.en_US
dc.identifier.citedreferenceOuyang W, Ranganath SH, Weindel K et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4 independent mechanism. Immunity 1998; 9: 745 – 755.en_US
dc.identifier.citedreferenceSzabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000; 100: 655 – 669.en_US
dc.identifier.citedreferenceCajter LL, Murphy KM. Lineage-specific requirement for signal transducer and activator of transcription (Stat) 4 in interferon γ production from CD4 + versus CD8 + T cells. J Exp Med 1999; 189: 1355 – 1360.en_US
dc.identifier.citedreferenceFitzpatrick DR, Shirley KM, Kelso A. Cutting edge: stable epigenetic inheritance of regional IFN-γ promoter demethylation in CD44 high CD8 + T lymphocytes. J Immunol 1999; 162: 5053 – 5057.en_US
dc.identifier.citedreferenceTomura M, Maruo S, Mu J et al. Differential capacities of CD4 +, CD8 +, and CD4-CD8- T cell subsets to express IL-18 receptor and produce IFN-γ in response to IL-18. J Immunol 1998; 160: 3759 – 3765.en_US
dc.identifier.citedreferenceNakanishi K, Yoshimoto T, Tsutsui H, Okamura H. Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol 2001; 19: 423 – 474.en_US
dc.identifier.citedreferenceOkamoto I, Kohno K, Tanimoto T, Ikegami H, Kurimoto M. Development of CD8 + effector T cells is differentially regulated by IL-18 and IL-12. J Immunol 1999; 162: 3202 – 3211.en_US
dc.identifier.citedreferenceGately MK, Carvajal DM, Connaughton SE et al. Interleukin-12 antagonist activity of mouse interleukin-12 p40 homodimer in vitro and in vivo. Ann NY Acad Sci 1996; 795: 1 – 12.en_US
dc.identifier.citedreferencePiccotti JR, Chan SY, Li K, Eichwald EJ, Bishop DK. Differential effects of IL-12 receptor blockade with IL-12 p40 homodimer on the induction of CD4 + and CD8 + IFN-γ producing cells. J Immunol 1997; 158: 643 – 648.en_US
dc.identifier.citedreferenceLehmann J, Bellmann S, Werner C, SchrÖder R, SchÜtze N, Alber G. IL-12 p40-dependent agonistic effects on the development of protective innate and adaptive immunity against Salmonella enteritidis. J Immunol 2001; 167: 5304 – 5315.en_US
dc.identifier.citedreferenceCooper AM, Kipnis A, Turner J, Magram J, Ferrante J, Orme IM. Mice lacking bioactive IL-12 can generate protective, antigen-specific cellular responses to mycobacterial infection only if the IL-12 p40 subunit is present. J Immunol 2002; 168: 1322 – 1327.en_US
dc.identifier.citedreferenceOppmann B, Lesley R, Blom B et al. Novel p19 protein engages IL-12 p40 to form a cytokine, IL-23, with biologic activities similar as well as distinct from IL-12. Immunity 2000; 13: 715 – 725.en_US
dc.identifier.citedreferenceSzabo SJ, Sullivan BM, Stemmann C, Satoskar AR, Sleckman BP, Glimcher LH. Distinct effects of T-bet in Th1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 2002; 295: 338 – 342.en_US
dc.identifier.citedreferenceGorelik L, Constant S, Flavell RA. Mechanism of transforming growth factor β-induced inhibition of T helper type 1 differentiation. J Exp Med 2002; 195: 1499 – 1505.en_US
dc.identifier.citedreferenceLetterio JJ, Roberts AB. Regulation of immune responses by TGF-β. Annu Rev Immunol 1998; 16: 137 – 161.en_US
dc.identifier.citedreferenceLotz M, Kekow J, Carson DA. Transforming growth factor-beta and cellular immune responses in synovial fluids. J Immunol 1990; 144: 4189 – 4194.en_US
dc.identifier.citedreferenceChan SY, Goodman RE, Szmuskovicz JR, Roessler B, Eichwald EJ, Bishop DK. Rapid communication: DNA-liposome versus adenoviral mediated gene transfer of TGFβ1 in vascularized cardiac allografts: Differential sensitivity of CD4 + and CD8 + T cells to TGFβ1. Transplantation 2000; 70: 1292 – 1301.en_US
dc.identifier.citedreferenceMa A, Boone DL, Lodolce JP. The pleiotropic functions of Interleukin 15: Not so interleukin 2-like after all. J Exp Med 2000; 191: 753 – 755.en_US
dc.identifier.citedreferenceTagaya Y, Bamford RN, DeFilippis AP, Waldman TA. IL-15: a pleiotropic cytokine with diverse receptor/signaling pathways whose expression is controlled at multiple levels. Immunity 1996; 4: 329 – 336.en_US
dc.identifier.citedreferenceZhang X, Sun S, Hwang I, Tough DF, Sprent J. Potent and selective stimulation of memory-phenotype CD8 + T cells in vivo by IL-15. Immunity 1998; 8: 591 – 599.en_US
dc.identifier.citedreferenceKennedy MK, Glaccum M, Brown SN et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15- deficient mice. J Exp Med 2000; 191: 771 – 780.en_US
dc.identifier.citedreferenceKu C-C, Kappler J, Marrack P. The growth of the very large CD8 + T cell clones in older mice is controlled by cytokines. J Immunol 2001; 166: 2186 – 2193.en_US
dc.identifier.citedreferenceSchluns KS, Williams K, Ma A, Zheng XX, LefranÇois L. Cutting edge: requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J Immunol 2002; 168: 4827 – 4831.en_US
dc.identifier.citedreferenceLodolce JP, Boone DL, Chai S et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 1998; 9: 669 – 676.en_US
dc.identifier.citedreferenceLi XC, Demirci G, Ferrari-Lacraz S et al. IL-15 and IL-2: a matter of life and death for T cells in vivo. Nat Med 2001; 7: 114 – 118.en_US
dc.identifier.citedreferencePavlakis M, Strehlau J, Lipman M, Shapiro M, Maslinski W, Strom TB. Intragraft IL-15 transcripts are increased in human renal allograft rejection. Transplantation 1996; 62: 543 – 545.en_US
dc.identifier.citedreferenceFerrari-Lacraz S, Zheng XX, Kim YS et al. An antagonistic IL-15/Fc protein prevents costimulation blockade-resistant rejection. J Immunol 2001; 167: 3478 – 3485.en_US
dc.identifier.citedreferenceSmith XG, Bolton EM, Ruchatz H, Wei X-q, Liew FY, Bradley JA. Selective blockade of IL-15 by soluble IL-15 receptor α-chain enhances cardiac allograft survival. J Immunol 2000; 165: 3444 – 3450.en_US
dc.identifier.citedreferenceSayegh MH, Turka LA. The role of T-cell costimulatory activation pathways in transplant rejection. N Engl J Med 1998; 338: 1813 – 1821.en_US
dc.identifier.citedreferenceHarlan DM, Kirk AD. The future of organ and tissue transplantation: can T-cell costimulatory pathway modifiers revolutionize the prevention of graft rejection? JAMA 1999; 282: 1076 – 1082.en_US
dc.identifier.citedreferenceGudmundsdottir H, Turka LA. T cell costimulatory blockade: New therapies for transplant rejection. J Am Soc Nephrol 1999; 10: 1356 – 1365.en_US
dc.identifier.citedreferenceSalomon B, Bluestone JA. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 2001; 19: 225 – 252.en_US
dc.identifier.citedreferenceAdams AB, Larsen CP, Pearson TC, Newell KA. The role of TNF receptor and TNF superfamily molecules in organ transplantation. Am J Transplant 2002; 2: 12 – 18.en_US
dc.identifier.citedreferenceJones ND, Van Maurik A, Hara M et al. CD40-CD40 ligand-independent activation of CD8 + T cells can trigger allograft rejection. J Immunol 2000; 165: 1111 – 1118.en_US
dc.identifier.citedreferenceWang B, Maile R, Greenwood R, Collins EJ, Frelinger JA. NaÏve CD8 + T cells do not require costimulation for proliferation and differentiation into cytotoxic effector cells. J Immunol 2000; 164: 1216 – 1222.en_US
dc.identifier.citedreferenceMittrÜcker H-W, Kirsar M, KÖhler A, Hurwitz R, Kaufmann SHE. Role of CD28 for the generation and expansion of antigen-specific CD8 + T lymphocytes during infection with Listeria monocytogenes. J Immunol 2001; 167: 5620 – 5627.en_US
dc.identifier.citedreferenceHamilton SE, Tvinnereim AR, Hajty JT. Listeria monocytogenes infection overcomes the requirement for CD40 ligand in exogenous antigen presentation to CD8 + T cells. J Immunol 2001; 167: 5603 – 5609.en_US
dc.identifier.citedreferenceSuresh M, Whitmire JK, Harrington LE et al. Role of CD28–B7 interactions in generation and maintenance of CD8 T cell memory. J Immunol 2001; 167: 5565 – 5573.en_US
dc.identifier.citedreferenceWhitmire JK, Flavell RA, Grewal IS, Larsen CP, Pearson TC, Ahmed R. CD40-CD40 ligand costimulation is required for generating antiviral CD4 T cell responses but is dispensable for CD8 T cell responses. J Immunol 1999; 163: 3194 – 3201.en_US
dc.identifier.citedreferenceGreen EA, Wong FS, Eshima K, Mora C, Flavell RA. Neonatal tumor necrosis factor α promotes diabetes in nonobese diabetic mice by CD154-independent antigen presentation to CD8 + T cells. J Exp Med 2000; 191: 225 – 237.en_US
dc.identifier.citedreferenceChai J-G, Vendetti S, Bajtok I et al. Critical role of costimulation in the activation of naÏve antigen-specific TCR transgenic CD8 + T cells in vitro. J Immunol 1999; 163: 1298 – 1305.en_US
dc.identifier.citedreferenceLefranÇois L, Olson S, Masopust D. A critical role for CD40–CD40 ligand interactions in amplification of the mucosal CD8 T cell response. J Exp Med 1999; 190: 1275 – 1283.en_US
dc.identifier.citedreferenceBuhlmann JE, Gonzalez M, Ginther B et al. Cutting edge: sustained expansion of CD8 + T cells requires CD154 expression by Th cells in acute graft versus host disease. J Immunol 1999; 162: 4373 – 4376.en_US
dc.identifier.citedreferenceAndreasen SØ, Christensen JE, Marker O, Thomsen AR. Role of CD40 ligand and CD28 in induction and maintenance of antiviral CD8 + effector T cell responses. J Immunol 2000; 164: 3689 – 3697.en_US
dc.identifier.citedreferenceWatts TH, DeBenedette MA. T cell Co-stimulatory molecules other than CD28. Curr Opin Immunol 1999; 11: 286 – 293.en_US
dc.identifier.citedreferenceVinay DS, Kwon BS. Role of 4–1BB in immune responses. Semin Immunol 1998; 10: 481 – 489.en_US
dc.identifier.citedreferenceHurtado JC, Kim YJ, Kwon BS. Signals through 4–1BB are costimulatory to previously activated splenic T cells and inhibit activation-induced cell death. J Immunol 1997; 158: 2600 – 2609.en_US
dc.identifier.citedreferenceKim Y-J, Kim SH, Mantel P, Kwon BS. Human 4–1BB regulates CD28 co-stimulation to promote Th1 responses. Eur J Immunol 1998; 28: 881 – 890.en_US
dc.identifier.citedreferenceShuford WW, Klussman K, Tritchler DD et al. 4–1BB costimulatory signals preferentially induce CD8 + T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med 1997; 186: 47 – 55.en_US
dc.identifier.citedreferenceTakahashi C, Mittler RS, Vella AT. Cutting edge: 4–1BB is a bona fide CD8 T cell survival signal. J Immunol 1999; 162: 5037 – 5040.en_US
dc.identifier.citedreferenceTan JT, Whitmire JK, Ahmed R, Pearson TC, Larsen CP. 4-1BB ligand, a member of the TNF family, is important for the generation of antiviral CD8 T cell responses. J Immunol 1999; 163: 4859 – 4868.en_US
dc.identifier.citedreferenceTan JT, Whitmire JK, Murali-Krishna K et al. 4-1BB costimulation is required for protective anti-viral immunity after peptide vaccination. J Immunol 2000; 164: 2320 – 2325.en_US
dc.identifier.citedreferenceTan JT, Ha J, Cho HR et al. Analysis of expression and function of the costimulatory molecule 4-1BB in alloimmune responses. Transplantation 2000; 70: 175 – 183.en_US
dc.identifier.citedreferenceBlazar BR, Kwon BS, Panoskaltsis-Mortari A, Kwak KB, Peschon JJ, Taylor PA. Ligation of 4–1BB (CDw137) regulates graft-versus-host disease, graft-versus-leukemia, and graft rejection in allogeneic bone marrow transplant recipients. J Immunol 2001; 166: 3174 – 3183.en_US
dc.identifier.citedreferenceCannons JL, Lau P, Ghumman B et al. 4–1BB ligand induced cell division, sustains survival, and enhances effector function of CD4 and CD8 T cells with similar efficacy. J Immunol 2001; 167: 1313 – 1324.en_US
dc.identifier.citedreferenceWen T, Bukczynski J, Watts TH. 4–1BB ligand-mediated costimulation of human T cells induces CD4 and CD8 T cell expansion, cytokine production, and the development of cytolytic effector function. J Immunol 2002; 168: 4897 – 4906.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.