Show simple item record

Insulin Signaling in Microdomains of the Plasma Membrane

dc.contributor.authorSaltiel, Alan R.en_US
dc.contributor.authorPessin, Jeffrey E.en_US
dc.date.accessioned2010-06-01T20:46:48Z
dc.date.available2010-06-01T20:46:48Z
dc.date.issued2003-11en_US
dc.identifier.citationSaltiel, Alan R.; Pessin, Jeffrey E. (2003). "Insulin Signaling in Microdomains of the Plasma Membrane." Traffic 4(11): 711-716. <http://hdl.handle.net/2027.42/73880>en_US
dc.identifier.issn1398-9219en_US
dc.identifier.issn1600-0854en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73880
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=14617354&dopt=citationen_US
dc.format.extent249217 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherMunksgaard International Publishersen_US
dc.publisherBlackwell Publishing Ltden_US
dc.rightsBlackwell Munksgaard, 2003en_US
dc.subject.otherAdaptoren_US
dc.subject.otherCaveolaeen_US
dc.subject.otherG Proteinsen_US
dc.subject.otherGlucose Transporten_US
dc.subject.otherPhosphorylationen_US
dc.titleInsulin Signaling in Microdomains of the Plasma Membraneen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumLife Sciences Institute, University of Michigan, Ann Arbor, MI 48109–0650, USAen_US
dc.contributor.affiliationotherDepartment of Pharmacological Sciences, SUNY-Stony Brook, Stony Brook, NY 11794–8651, USAen_US
dc.identifier.pmid14617354en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73880/1/j.1600-0854.2003.00119.x.pdf
dc.identifier.doi10.1034/j.1600-0854.2003.00119.xen_US
dc.identifier.sourceTrafficen_US
dc.identifier.citedreferenceWhite MF. The IRS-signalling system. a network of docking proteins that mediate insulin action. Mol Cell Biochem 1998; 182: 3 – 11.en_US
dc.identifier.citedreferenceHolgado-Madruga M, Emlet DR, Moscatello DK, Godwin AK, Wong AJ. A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature 1996; 379: 560 – 564.en_US
dc.identifier.citedreferenceSasaoka T, Rose DW, Jhun BH, Saltiel AR, Draznin B, Olefsky JM. Evidence for a functional role of Shc proteins in mitogenic signaling induced by insulin, insulin-like growth factor-1, and epidermal growth factor. J Biol Chem 1994; 269: 13689 – 13694.en_US
dc.identifier.citedreferenceLiu J, Kimura A, Baumann CA, Saltiel AR. APS facilitates c-Cbl tyrosine phosphorylation and GLUT4 translocation in response to insulin in 3T3-L1 adipocytes. Mol Cell Biol 2002; 22: 3599 – 3609.en_US
dc.identifier.citedreferenceNoguchi T, Matozaki T, Inagaki K, Tsuda M, Fukunaga K, Kitamura Y, Kitamura T, Shii K, Yamanashi Y, Kasuga M. Tyrosine phosphorylation of p62 (Dok) induced by cell adhesion and insulin: possible role in cell migration. EMBO J 1999; 18: 1748– 60.en_US
dc.identifier.citedreferenceRibon V, Saltiel AR. Insulin stimulates tyrosine phosphorylation of the proto-oncogene product of c-Cbl in 3T3-L1 adipocytes. Biochem J 1997; 324: 839 – 845.en_US
dc.identifier.citedreferenceAraki E, Lipes MA, Patti ME, Bruning JC, Haag B, Johnson RS, Kahn CR. Alternative pathway of insulin signaling in mice with targeted disruption of the IRS-1 gene. Nature 1994; 372: 186 – 190.en_US
dc.identifier.citedreferenceBruning JC, Winnay J, Bonner-Weir S, Taylor SI, Accili D, Kahn CR. Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 1997; 88: 561 – 572.en_US
dc.identifier.citedreferenceTamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, Terauchi Y, Ueki K, Kaburagi Y, Satoh S, Sekihara H, Yoshioka S, Horikoshi H, Furuta Y, Ikawa Y. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1 [see comments]. Nature 1994; 372: 182 – 186.en_US
dc.identifier.citedreferenceWithers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner-Weir S, White MF. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 1998; 391: 900 – 904.en_US
dc.identifier.citedreferenceOkada T, Kawano Y, Sakakibara T, Hazeki O, Ui M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J Biol Chem 1994; 269: 3568 – 3573.en_US
dc.identifier.citedreferenceCheatham B, Vlahos CJ, Cheatham L, Wang L, Blenis J, Kahn CR. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp7 0, S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol 1994; 14: 4902 – 4911.en_US
dc.identifier.citedreferenceMartin SS, Haruta T, Morris AJ, Klippel A, Williams LT, Olefsky JM. Activated phosphatidylinositol 3-kinase is sufficient to mediate actin rearrangement and GLUT4 translocation in 3T3-L1 adipocytes. J Biol Chem 1996; 271: 17605 – 17608.en_US
dc.identifier.citedreferenceWiese RJ, Mastick CC, Lazar DF, Saltiel AR. Activation of mitogen-activated protein kinase and phosphatidylinositol 3′-kinase is not sufficient for the hormonal stimulation of glucose uptake, lipogenesis, or glycogen synthesis in 3T3-L1 adipocytes. J Biol Chem 1995; 270: 3442 – 3446.en_US
dc.identifier.citedreferenceGuilherme A, Czech MP. Stimulation of IRS-1-associated phosphatidylinositol 3-kinase and Akt/protein kinase B but not glucose transport by beta1-integrin signaling in rat adipocytes. J Biol Chem 1998; 273: 33119 – 33122.en_US
dc.identifier.citedreferenceNave BT, Haigh RJ, Hayward AC, Siddle K, Shepherd PR. Compartment-specific regulation of phosphoinositide 3-kinase by platelet-derived growth factor and insulin in 3T3-L1 adipocytes. Biochem J 1996; 318: 55 – 60.en_US
dc.identifier.citedreferenceJiang T, Sweeney G, Rudolf MT, Klip A, Traynor-Kaplan A, Tsien RY. Membrane-permeant esters of phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1998; 273: 11017 – 11024.en_US
dc.identifier.citedreferenceCortright RN, Dohm GL. Mechanisms by which insulin and muscle contraction stimulate glucose transport. Can J Appl Physiol 1997; 22: 519 – 530.en_US
dc.identifier.citedreferenceAlessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG, Gaffney P, Reese CB, MacDougall CN, Harbison D, Ashworth A, Bownes M. 3-Phosphoinositide-dependent protein kinase-1 (PDK1). structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 1997; 7: 776 – 789.en_US
dc.identifier.citedreferenceLe Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P, Parker PJ. Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science 1998; 281: 2042 – 2045.en_US
dc.identifier.citedreferenceCorvera S, Czech MP. Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction. Trends Cell Biol 1998; 8: 442 – 446.en_US
dc.identifier.citedreferenceKim YB, Nikoulina SE, Ciaraldi TP, Henry RR, Kahn BB. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes [In Process Citation]. J Clin Invest 1999; 104: 733 – 741.en_US
dc.identifier.citedreferenceKotani K, Ogawa W, Matsumoto M, Kitamura T, Sakaue H, Hino Y, Miyake K, Sano W, Akimoto K, Ohno S, Kasuga M. Requirement of atypical protein kinase clambda for insulin stimulation of glucose uptake but not for Akt activation in 3T3-L1 adipocytes. Mol Cell Biol 1998; 18: 6971 – 6982.en_US
dc.identifier.citedreferenceOlson AL, Pessin JE. Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annu Rev Nutr 1996; 16: 235 – 256.en_US
dc.identifier.citedreferencePessin JE, Thurmond DC, Elmendorf JS, Coker KJ, Okada S. Molecular basis of insulin-stimulated GLUT4 vesicle trafficking. Location! Location! Location! J Biol Chem 1999; 274: 2593 – 2596.en_US
dc.identifier.citedreferenceVolchuk A, Wang Q, Ewart HS, Liu Z, He L, Bennett MK, Klip A. Syntaxin 4 in 3T3-L1 adipocytes. regulation by insulin and participation in insulin-dependent glucose transport. Mol Biol Cell 1996; 7: 1075 – 1082.en_US
dc.identifier.citedreferenceRea S, James DE. Moving GLUT4: the biogenesis and trafficking of GLUT4 storage vesicles. Diabetes 1997; 46: 1667 – 1677.en_US
dc.identifier.citedreferenceOlson AL, Knight JB, Pessin JE. Syntaxin 4, VAMP2, and/or VAMP3/cellubrevin are functional target membrane and vesicle SNAP receptors for insulin-stimulated GLUT4 translocation in adipocytes. Mol Cell Biol 1997; 17: 2425 – 2435.en_US
dc.identifier.citedreferenceCheatham B, Volchuk A, Kahn CR, Wang L, Rhodes CJ, Klip A. Insulin-stimulated translocation of GLUT4 glucose transporters requires SNARE-complex proteins. Proc Natl Acad Sci USA 1996; 93: 15169 – 15173.en_US
dc.identifier.citedreferenceRea S, Martin LB, McIntosh S, Macaulay SL, Ramsdale T, Baldini G, James DE. Syndet, an adipocyte target SNARE involved in the insulin-induced translocation of GLUT4 to the cell surface. J Biol Chem 1998; 273: 18784 – 18792.en_US
dc.identifier.citedreferenceThurmond DC, Ceresa BP, Okada S, Elmendorf JS, Coker K, Pessin JE. Regulation of insulin-stimulated GLUT4 translocation by Munc18c in 3T3L1 adipocytes. J Biol Chem 1998; 273: 33876 – 33883.en_US
dc.identifier.citedreferenceMin J, Okada S, Kanzaki M, Elmendorf JS, Coker KJ, Ceresa BP, Syu LJ, Noda Y, Saltiel AR, Pessin JE. Synip: a novel insulin-regulated syntaxin 4-binding protein mediating GLUT4 translocation in adipocytes. Mol Cell 1999; 3: 751 – 760.en_US
dc.identifier.citedreferenceChamberlain LH. Inhibition of isoprenoid biosynthesis causes insulin resistance in 3T3-L1 adipocytes. FEBS Lett 2001; 507: 357 – 361.en_US
dc.identifier.citedreferenceChamberlain LH, Gould GW. The vesicle- and target-SNARE proteins that mediate Glut4 vesicle fusion are localized in detergent-insoluble lipid rafts present on distinct intracellular membranes. J Biol Chem 2002; 277: 49750 – 49754.en_US
dc.identifier.citedreferenceRos-Baro A, Lopez-Iglesias C, Peiro S, Bellido D, Palacin M, Zorzano A, Camps M. Lipid rafts are required for GLUT4 internalization in adipose cells. Proc Natl Acad Sci USA 2001; 98: 12050 – 12055.en_US
dc.identifier.citedreferenceKarlsson M, Thorn H, Parpal S, Stralfors P, Gustavsson J. Insulin induces translocation of glucose transporter GLUT4 to plasma membrane caveolae in adipocytes. FASEB J 2002; 16: 249 – 251.en_US
dc.identifier.citedreferenceSmart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T, Lisanti MP. Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 1999; 19: 7289 – 7304.en_US
dc.identifier.citedreferenceMastick CC, Brady MJ, Saltiel AR. Insulin stimulates the tyrosine phosphorylation of caveolin. J Cell Biol 1995; 129: 1523 – 1531.en_US
dc.identifier.citedreferenceMastick CC, Saltiel AR. Insulin-stimulated tyrosine phosphorylation of caveolin is specific for the differentiated adipocyte phenotype in 3T3-L1 cells. J Biol Chem 1997; 272: 20706 – 20714.en_US
dc.identifier.citedreferenceKimura A, Mora S, Shigematsu S, Pessin JE, Saltiel AR. The insulin receptor catalyzes the tyrosine phosphorylation of caveolin-1. J Biol Chem 2002; 277: 30153 – 30158.en_US
dc.identifier.citedreferenceGustavsson J, Parpal S, Karlsson M, Ramsing C, Thorn H, Borg M, Lindroth M, Peterson KH, Magnusson KE, Stralfors P. Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J 1999; 13: 1961 – 1971.en_US
dc.identifier.citedreferenceCohen AW, Razani B, Wang XB, Combs TP, Williams TM, Scherer PE, Lisanti MP. Caveolin-1 deficient mice show post-prandial hyper-insulinemia, insulin resistance, and defective insulin receptor (IR-{beta}) protein expression in adipose tissue. Am J Physiol Cell Physiol 2003; 285: c222 – 235.en_US
dc.identifier.citedreferenceRibon V, Printen JA, Hoffman NG, Kay BK, Saltiel AR. A novel, multifunctional c-Cbl binding protein in insulin receptor signaling in 3T3-L1 adipocytes. Mol Cell Biol 1998; 18: 872 – 879.en_US
dc.identifier.citedreferenceRibon V, Johnson JH, Camp HS, Saltiel AR. Thiazolidinediones and insulin resistance: peroxisome proliferatoractivated receptor gamma activation stimulates expression of the CAP gene. Proc Natl Acad Sci USA 1998; 95: 14751 – 14756.en_US
dc.identifier.citedreferenceBaumann CA, Chokshi N, Saltiel AR, Ribon V. Cloning and characterization of a functional peroxisome proliferator activator receptor-gamma-responsive element in the promoter of the CAP gene. J Biol Chem 2000; 275: 9131 – 9135.en_US
dc.identifier.citedreferenceKimura A, Baumann CA, Chiang SH, Saltiel AR. The sorbin homology domain. a motif for the targeting of proteins to lipid rafts. Proc Natl Acad Sci USA 2001; 98: 9098 – 9103.en_US
dc.identifier.citedreferenceBaumann CA, Ribon V, Kanzaki M, Thurmond DC, Mora S, Shigematsu S, Bickel PE, Pessin JE, Saltiel AR. CAP defines a second signalling pathway required for insulin-stimulated glucose transport [see comments]. Nature 2000; 407: 202 – 207.en_US
dc.identifier.citedreferenceChiang SH, Baumann CA, Kanzaki M, Thurmond DC, Watson RT, Neudauer CL, Macara IG, Pessin JE, Saltiel AR. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 2001; 410: 944 – 948.en_US
dc.identifier.citedreferenceChiang SH, Hou JC, Hwang J, Pessin JE, Saltiel AR. Cloning and functional characterization of related TC10 isoforms, a subfamily of Rho proteins involved in insulin-stimulated glucose transport. J Biol Chem 2002; 277: 13067 – 13073.en_US
dc.identifier.citedreferenceWatson RT, Shigematsu S, Chiang SH, Mora S, Kanzaki M, Macara IG, Saltiel AR, Pessin JE. Lipid raft microdomain compartmentalization of TC10 is required for insulin signaling and GLUT4 translocation. J Cell Biol 2001; 154: 829 – 840.en_US
dc.identifier.citedreferenceTapon N, Hall A. Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol 1997; 9: 86 – 92.en_US
dc.identifier.citedreferenceEmoto M, Langille SE, Czech MP. A role for kinesin in insulin-stimulated glut4 glucose transporter translocation in 3t3-11 adipocytes. J Biol Chem 2001; 276: 10677 – 10682.en_US
dc.identifier.citedreferenceOmata W, Shibata H, Li L, Takata K, Kojima I. Actin filaments play a critical role in insulin-induced exocytotic recruitment but not in endocytosis of GLUT4 in isolated rat adipocytes. Biochem J 2000; 346, Part 2: 321 – 328.en_US
dc.identifier.citedreferenceTsakiridis T, Vranic M, Klip A. Disassembly of the actin network inhibits insulin-dependent stimulation of glucose transport and prevents recruitment of glucose transporters to the plasma membrane. J Biol Chem 1994; 269: 29934 – 29942.en_US
dc.identifier.citedreferenceNeudauer CL, Joberty G, Tatsis N, Macara IG. Distinct cellular effects and interactions of the Rho-family GTPase TC10. Curr Biol 1998; 8: 1151 – 1160.en_US
dc.identifier.citedreferenceChang L, Adams RD, Saltiel AR. The TC10-interacting protein CIP4/2 is required for insulin-stimulated Glut4 translocation in 3T3L1 adipocytes. Proc Natl Acad Sci USA 2002; 99: 12835 – 12840.en_US
dc.identifier.citedreferenceInoue M, Chang L, Hwang J, Chiang SH, Saltiel AR. The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin. Nature 2003; 422: 629 – 633.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.