Show simple item record

The structural view of bacterial translocation-specific chaperone SecB: implications for function

dc.contributor.authorZhou, Jiahaien_US
dc.contributor.authorXu, Zhaohuien_US
dc.date.accessioned2010-06-01T21:14:56Z
dc.date.available2010-06-01T21:14:56Z
dc.date.issued2005-10en_US
dc.identifier.citationZhou, Jiahai; Xu, Zhaohui (2005). "The structural view of bacterial translocation-specific chaperone SecB: implications for function." Molecular Microbiology 58(2): 349-357. <http://hdl.handle.net/2027.42/74325>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74325
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16194224&dopt=citationen_US
dc.description.abstractSecB is a molecular chaperone that functions in bacterial post-translational protein translocation pathway. It maintains newly synthesized precursor polypeptide chains in a translocation-competent state and guides them to the translocon via its high-affinity binding to the ligand as well as to the membrane-embedded ATPase SecA. Recent advances in elucidating the structures of SecB have enabled the examination of protein function in the structural context. Structures of SecB from both Haemophilus influenzae and Escherichia coli support the early two-subsite polypeptide-binding model. In addition, the detailed molecular interaction between SecB and SecA was revealed by a structure of SecB in complex with the C-terminal zinc-containing domain of SecA. These observations explain the dual role of SecB plays in the translocation pathway, as a molecular chaperone and a specific targeting factor. A model of SecB–SecA complex suggests that the binding of SecA to SecB changes the conformation of the polypeptide binding sites in the chaperone, enabling transfer of precursor polypeptides from SecB to SecA. Recent studies also show the presence of a second zinc-independent SecB binding site in SecA and the new interaction might contribute to the function of SecB.en_US
dc.format.extent742276 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2005 Blackwell Publishing Ltden_US
dc.titleThe structural view of bacterial translocation-specific chaperone SecB: implications for functionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biological Chemistry, Medical School and Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA.en_US
dc.identifier.pmid16194224en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74325/1/j.1365-2958.2005.04842.x.pdf
dc.identifier.doi10.1111/j.1365-2958.2005.04842.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceBaud, C., Karamanou, S., Sianidis, G., Vrontou, E., Politou, A. S., Economou, A. ( 2002 ) Allosteric communication between signal peptides and the SecA protein DEAD motor ATPase domain. J Biol Chem 277: 13724 – 13731.en_US
dc.identifier.citedreferenceden Blaauwen, T., Terpetschnig, E., Lakowicz, J. R., Driessen, A. J. ( 1997 ) Interaction of SecB with soluble SecA. FEBS Lett 416: 35 – 38.en_US
dc.identifier.citedreferenceBreukink, E., Kusters, R., De Kruijff, B. ( 1992 ) In-vitro studies on the folding characteristics of the Escherichia coli precursor protein prePhoE. Evidence that SecB prevents the precursor from aggregating by forming a functional complex. Eur J Biochem 208: 419 – 425.en_US
dc.identifier.citedreferencede Cock, H., Tommassen, J. ( 1992 ) SecB-binding does not maintain the translocation-competent state of prePhoE. Mol Microbiol 6: 599 – 604.en_US
dc.identifier.citedreferencede Cock, H., Overeem, W., Tommassen, J. ( 1992 ) Biogenesis of outer membrane protein PhoE of Escherichia coli. Evidence for multiple SecB-binding sites in the mature portion of the PhoE protein. J Mol Biol 224: 369 – 379.en_US
dc.identifier.citedreferenceDekker, C., de Kruijff, B., Gros, P. ( 2003 ) Crystal structure of SecB from Escherichia coli. J Struct Biol 144: 313 – 319.en_US
dc.identifier.citedreferenceDelepelaire, P., Wandersman, C. ( 1998 ) The SecB chaperone is involved in the secretion of the Serratia marcescens HasA protein through an ABC transporter. EMBO J 17: 936 – 944.en_US
dc.identifier.citedreferenceDempsey, B. R., Wrona, M., Moulin, J. M., Gloor, G. B., Jalilehvand, F., Lajoie, G., et al. ( 2004 ) Solution NMR structure and X-ray absorption analysis of the C-terminal zinc-binding domain of the SecA ATPase. Biochemistry 43: 9361 – 9371.en_US
dc.identifier.citedreferenceDiamond, D. L., Randall, L. L. ( 1997 ) Kinetic partitioning. Poising SecB to favor association with a rapidly folding ligand. J Biol Chem 272: 28994 – 28998.en_US
dc.identifier.citedreferenceDriessen, A. J. ( 2001 ) SecB, a molecular chaperone with two faces. Trends Microbiol 9: 193 – 196.en_US
dc.identifier.citedreferenceDriessen, A. J., Manting, E. H., van der Does, C. ( 2001 ) The structural basis of protein targeting and translocation in bacteria. Nat Struct Biol 8: 492 – 498.en_US
dc.identifier.citedreferenceFekkes, P., Driessen, A. J. ( 1999 ) Protein targeting to the bacterial cytoplasmic membrane. Microbiol Mol Biol Rev 63: 161 – 173.en_US
dc.identifier.citedreferenceFekkes, P., van der Does, C., Driessen, A. J. ( 1997 ) The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. EMBO J 16: 6105 – 6113.en_US
dc.identifier.citedreferenceFekkes, P., de Wit, J. G., van der Wolk, J. P., Kimsey, H. H., Kumamoto, C. A., Driessen, A. J. ( 1998 ) Preprotein transfer to the Escherichia coli translocase requires the co-operative binding of SecB and the signal sequence to SecA. Mol Microbiol 29: 1179 – 1190.en_US
dc.identifier.citedreferenceFekkes, P., de Wit, J. G., Boorsma, A., Friesen, R. H., Driessen, A. J. ( 1999 ) Zinc stabilizes the SecB binding site of SecA. Biochemistry 38: 5111 – 5116.en_US
dc.identifier.citedreferenceHa, S. C., Lee, T. H., Cha, S. S., Kim, K. K. ( 2004 ) Functional identification of the SecB homologue in Methanococcus jannaschii and direct interaction of SecB with trigger factor. Biochem Biophys Res Commun 315: 1039 – 1044.en_US
dc.identifier.citedreferenceHardy, S. J., Randall, L. L. ( 1991 ) A kinetic partitioning model of selective binding of nonnative proteins by the bacterial chaperone SecB. Science 251: 439 – 443.en_US
dc.identifier.citedreferenceHartl, F. U., Lecker, S., Schiebel, E., Hendrick, J. P., Wickner, W. ( 1990 ) The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell 63: 269 – 279.en_US
dc.identifier.citedreferenceHoffschulte, H. K., Drees, B., Muller, M. ( 1994 ) Identification of a soluble SecA/SecB complex by means of a subfractionated cell-free export system. J Biol Chem 269: 12833 – 12839.en_US
dc.identifier.citedreferenceHunt, J. F., Weinkauf, S., Henry, L., Fak, J. J., McNicholas, P., Oliver, D. B., Deisenhofer, J. ( 2002 ) Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297: 2018 – 2026.en_US
dc.identifier.citedreferenceJilaveanu, L. B., Zito, C. R., Oliver, D. ( 2005 ) Dimeric SecA is essential for protein translocation. Proc Natl Acad Sci USA 102: 7511 – 7516.en_US
dc.identifier.citedreferenceKhisty, V. J., Munske, G. R., Randall, L. L. ( 1995 ) Mapping of the binding frame for the chaperone SecB within a natural ligand, galactose-binding protein. J Biol Chem 270: 25920 – 25927.en_US
dc.identifier.citedreferenceKim, J., Kendall, D. A. ( 2000 ) Sec-dependent protein export and the involvement of the molecular chaperone SecB. Cell Stress Chaperones 5: 267 – 275.en_US
dc.identifier.citedreferenceKimura, E., Akita, M., Matsuyama, S., Mizushima, S. ( 1991 ) Determination of a region in SecA that interacts with presecretory proteins in Escherichia coli. J Biol Chem 266: 6600 – 6606.en_US
dc.identifier.citedreferenceKnoblauch, N. T., Rudiger, S., Schonfeld, H. J., Driessen, A. J., Schneider-Mergener, J., Bukau, B. ( 1999 ) Substrate specificity of the SecB chaperone. J Biol Chem 274: 34219 – 34225.en_US
dc.identifier.citedreferenceKumamoto, C. A. ( 1989 ) Escherichia coli SecB protein associates with exported protein precursors in vivo. Proc Natl Acad Sci USA 86: 5320 – 5324.en_US
dc.identifier.citedreferenceKumamoto, C. A., Beckwith, J. ( 1983 ) Mutations in a new gene, secB, cause defective protein localization in Escherichia coli. J Bacteriol 154: 253 – 260.en_US
dc.identifier.citedreferenceKumamoto, C. A., Beckwith, J. ( 1985 ) Evidence for specificity at an early step in protein export in Escherichia coli. J Bacteriol 163: 267 – 274.en_US
dc.identifier.citedreferenceLecker, S., Lill, R., Ziegelhoffer, T., Georgopoulos, C., Bassford, P. J., Jr, Kumamoto, C. A., Wickner, W. ( 1989 ) Three pure chaperone proteins of Escherichia coli – SecB, trigger factor and GroEL – form soluble complexes with precursor proteins in vitro. EMBO J 8: 2703 – 2709.en_US
dc.identifier.citedreferenceLecker, S. H., Driessen, A. J., Wickner, W. ( 1990 ) ProOmpA contains secondary and tertiary structure prior to translocation and is shielded from aggregation by association with SecB protein. EMBO J 9: 2309 – 2314.en_US
dc.identifier.citedreferenceLill, R., Dowhan, W., Wickner, W. ( 1990 ) The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 60: 271 – 280.en_US
dc.identifier.citedreferenceLiu, G., Topping, T. B., Randall, L. L. ( 1989 ) Physiological role during export for the retardation of folding by the leader peptide of maltose-binding protein. Proc Natl Acad Sci USA 86: 9213 – 9217.en_US
dc.identifier.citedreferenceMatousek, W. M., Alexandrescu, A. T. ( 2004 ) NMR structure of the C-terminal domain of SecA in the free state. Biochim Biophys Acta 1702: 163 – 171.en_US
dc.identifier.citedreferenceMuren, E. M., Suciu, D., Topping, T. B., Kumamoto, C. A., Randall, L. L. ( 1999 ) Mutational alterations in the homotetrameric chaperone SecB that implicate the structure as dimer of dimers. J Biol Chem 274: 19397 – 19402.en_US
dc.identifier.citedreferenceOr, E., Boyd, D., Gon, S., Beckwith, J., Rapoport, T. ( 2005 ) The bacterial ATPase SecA functions as a monomer in protein translocation. J Biol Chem 280: 9097 – 9105.en_US
dc.identifier.citedreferenceOsborne, A. R., Clemons, W. M., Jr, and Rapoport, T. A. ( 2004 ) A large conformational change of the translocation ATPase SecA. Proc Natl Acad Sci USA 101: 10937 – 10942.en_US
dc.identifier.citedreferenceRajapandi, T., Oliver, D. ( 1994 ) Carboxy-terminal region of Escherichia coli SecA ATPase is important to promote its protein translocation activity in vivo. Biochem Biophys Res Commun 200: 1477 – 1483.en_US
dc.identifier.citedreferenceRandall, L. L. ( 1992 ) Peptide binding by chaperone SecB: implications for recognition of nonnative structure. Science 257: 241 – 245.en_US
dc.identifier.citedreferenceRandall, L. L., Hardy, S. J. ( 1986 ) Correlation of competence for export with lack of tertiary structure of the mature species: a study in vivo of maltose-binding protein in E. coli. Cell 46: 921 – 928.en_US
dc.identifier.citedreferenceRandall, L. L., Hardy, S. J. ( 1995 ) High selectivity with low specificity: how SecB has solved the paradox of chaperone binding. Trends Biochem Sci 20: 65 – 69.en_US
dc.identifier.citedreferenceRandall, L. L., Hardy, S. J. ( 2002 ) SecB, one small chaperone in the complex milieu of the cell. Cell Mol Life Sci 59: 1617 – 1623.en_US
dc.identifier.citedreferenceRandall, L. L., Topping, T. B., Hardy, S. J. ( 1990 ) No specific recognition of leader peptide by SecB, a chaperone involved in protein export. Science 248: 860 – 863.en_US
dc.identifier.citedreferenceRandall, L. L., Topping, T. B., Hardy, S. J., Pavlov, M. Y., Freistroffer, D. V., Ehrenberg, M. ( 1997 ) Binding of SecB to ribosome-bound polypeptides has the same characteristics as binding to full-length, denatured proteins. Proc Natl Acad Sci USA 94: 802 – 807.en_US
dc.identifier.citedreferenceRandall, L. L., Hardy, S. J., Topping, T. B., Smith, V. F., Bruce, J. E., Smith, R. D. ( 1998 ) The interaction between the chaperone SecB and its ligands: evidence for multiple subsites for binding. Protein Sci 7: 2384 – 2390.en_US
dc.identifier.citedreferenceRandall, L. L., Crane, J. M., Liu, G., Hardy, S. J. ( 2004 ) Sites of interaction between SecA and the chaperone SecB, two proteins involved in export. Protein Sci 13: 1124 – 1133.en_US
dc.identifier.citedreferenceRandall, L. L., Crane, J. M., Lilly, A. A., Liu, G., Mao, C., Patel, C. N., Hardy, S. J. ( 2005 ) Asymmetric binding between SecA and SecB two symmetric proteins: implications for function in export. J Mol Biol 348: 479 – 489.en_US
dc.identifier.citedreferenceSapriel, G., Wandersman, C., Delepelaire, P. ( 2003 ) The SecB chaperone is bifunctional in Serratia marcescens: SecB is involved in the Sec pathway and required for HasA secretion by the ABC transporter. J Bacteriol 185: 80 – 88.en_US
dc.identifier.citedreferenceSharma, V., Arockiasamy, A., Ronning, D. R., Savva, C. G., Holzenburg, A., Braunstein, M., et al. ( 2003 ) Crystal structure of Mycobacterium tuberculosis SecA, a preprotein translocating ATPase. Proc Natl Acad Sci USA 100: 2243 – 2248.en_US
dc.identifier.citedreferenceSmith, V. F., Hardy, S. J., Randall, L. L. ( 1997 ) Determination of the binding frame of the chaperone SecB within the physiological ligand oligopeptide-binding protein. Protein Sci 6: 1746 – 1755.en_US
dc.identifier.citedreferenceTopping, T. B., Randall, L. L. ( 1994 ) Determination of the binding frame within a physiological ligand for the chaperone SecB. Protein Sci 3: 730 – 736.en_US
dc.identifier.citedreferenceTopping, T. B., Randall, L. L. ( 1997 ) Chaperone SecB from Escherichia coli mediates kinetic partitioning via a dynamic equilibrium with its ligands. J Biol Chem 272: 19314 – 19318.en_US
dc.identifier.citedreferenceTopping, T. B., Woodbury, R. L., Diamond, D. L., Hardy, S. J., Randall, L. L. ( 2001 ) Direct demonstration that homotetrameric chaperone SecB undergoes a dynamic dimer–tetramer equilibrium. J Biol Chem 276: 7437 – 7441.en_US
dc.identifier.citedreferenceUllers, R. S., Luirink, J., Harms, N., Schwager, F., Georgopoulos, C., Genevaux, P. ( 2004 ) SecB is a bona fide generalized chaperone in Escherichia coli. Proc Natl Acad Sci USA 101: 7583 – 7588.en_US
dc.identifier.citedreferenceVolkert, T. L., Baleja, J. D., Kumamoto, C. A. ( 1999 ) A highly mobile C-terminal tail of the Escherichia coli protein export chaperone SecB. Biochem Biophys Res Commun 264: 949 – 954.en_US
dc.identifier.citedreferenceWeiss, J. B., Ray, P. H., Bassford, P. J., Jr ( 1988 ) Purified secB protein of Escherichia coli retards folding and promotes membrane translocation of the maltose-binding protein in vitro. Proc Natl Acad Sci USA 85: 8978 – 8982.en_US
dc.identifier.citedreferenceWolff, N., Sapriel, G., Bodenreider, C., Chaffotte, A., Delepelaire, P. ( 2003 ) Antifolding activity of the SecB chaperone is essential for secretion of HasA, a quickly folding ABC pathway substrate. J Biol Chem 278: 38247 – 38253.en_US
dc.identifier.citedreferenceWoodbury, R. L., Topping, T. B., Diamond, D. L., Suciu, D., Kumamoto, C. A., Hardy, S. J., Randall, L. L. ( 2000 ) Complexes between protein export chaperone SecB and SecA. Evidence for separate sites on SecA providing binding energy and regulatory interactions. J Biol Chem 275: 24191 – 24198.en_US
dc.identifier.citedreferenceXu, Z., Knafels, J. D., Yoshino, K. ( 2000 ) Crystal structure of the bacterial protein export chaperone secB. Nat Struct Biol 7: 1172 – 1177.en_US
dc.identifier.citedreferenceZhou, J., Xu, Z. ( 2003 ) Structural determinants of SecB recognition by SecA in bacterial protein translocation. Nat Struct Biol 10: 942 – 947.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.