Show simple item record

Mantle reflectivity structure beneath oceanic hotspots

dc.contributor.authorGu, Yu Jeffreyen_US
dc.contributor.authorAn, Yulingen_US
dc.contributor.authorSacchi, Mauricioen_US
dc.contributor.authorSchultz, Ryanen_US
dc.contributor.authorRitsema, Jeroenen_US
dc.date.accessioned2010-06-01T21:43:27Z
dc.date.available2010-06-01T21:43:27Z
dc.date.issued2009-09en_US
dc.identifier.citationGu, Yu Jeffrey; An, Yuling; Sacchi, Mauricio; Schultz, Ryan; Ritsema, Jeroen (2009). "Mantle reflectivity structure beneath oceanic hotspots." Geophysical Journal International 178(3): 1456-1472. <http://hdl.handle.net/2027.42/74768>en_US
dc.identifier.issn0956-540Xen_US
dc.identifier.issn1365-246Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74768
dc.description.abstractThis study applies high-resolution Radon transform to a large set of SS precursors and explores the mantle reflectivity structure beneath 17 potentially ‘deep-rooted’ hotspots. The combined reduced time (Τ) and ray parameter ( p ) information effectively constrains the depth, spatial distribution and sharpness of upper-/mid-mantle reflectors. The olivine to wadsleyite phase boundary is deeper than the ocean and global averages and produces a dominant Τ– p domain signal. Laterally coherent observations of the deep 410-km seismic discontinuity, thin upper mantle transition zone and weak/absent 520-km reflector beneath hotspots make compelling arguments for large-scale, hot thermal anomalies in the top 400–600 km of the mantle. On the other hand, a relatively ‘flat’ and weak reflector at ∼653 km is inconsistent with ringwoodite to silicate perovskite + magnesiowÜstite transformation at temperatures greater than 2000 K. The lack of a negative correlation between topography and temperature implies (1) average or below-average temperatures at 600–700 km depths or (2) high temperatures and a dominating majorite garnet to Ca perovskite phase transformation. The proper choice between these two scenarios will directly impact the origin and depth of mantle plumes beneath hotspots. We further identify lower-mantle reflectors at 800–950 and 1100–1350 km depths beneath a number of the hotspots. Their presence implies that the chemistry and thermodynamics of the mid-mantle may be more complex than suggested by seismic tomography.en_US
dc.format.extent1789411 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 RASen_US
dc.subject.otherInverse Theoryen_US
dc.subject.otherBody Wavesen_US
dc.subject.otherWave Scattering and Diffractionen_US
dc.subject.otherDynamics of Lithosphere and Mantleen_US
dc.subject.otherDynamics: Convection Currents, and Mantle Plumesen_US
dc.subject.otherHotspotsen_US
dc.titleMantle reflectivity structure beneath oceanic hotspotsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Geological Sciences, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartment of Physics, University of Alberta, Edmonton, AB T6G 2G7, Canada. E-mail: jgu@phys.ualberta.caen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74768/1/j.1365-246X.2009.04242.x.pdf
dc.identifier.doi10.1111/j.1365-246X.2009.04242.xen_US
dc.identifier.sourceGeophysical Journal Internationalen_US
dc.identifier.citedreferenceAgee, C.B. & Walker, D., 1988. Olivine flotation in mantle melt, Earth planet. Sci. Lett., 90, 144 – 156.en_US
dc.identifier.citedreferenceAn, Y., Gu, Y.J. & Sacchi, M., 2007. Imaging mantle discontinuities using least-squares Radon transform, J. geophys. Res., 112, doi :.en_US
dc.identifier.citedreferenceAnderson, D.L., 1989. Theory of the Earth, Blackwell Scientific Publications, Oxford, UK, 388 pp.en_US
dc.identifier.citedreferenceAnderson, D.L., 2001. Top-Down Tectonics?, Science, 293, 2016 – 2018.en_US
dc.identifier.citedreferenceAnderson, D.L., 2005. Scoring hot spots: the plume and plate paradigms, in Plates, Plumes, and Paradigms, Vol. 388, pp. 31 – 54, eds Foulger, G.R., Natland, J.H., Presnall, D.C. & Anderson, D.L., Geological Society of America.en_US
dc.identifier.citedreferenceBassin, C., Laske, G. & Masters, M.G., 2000. The current limits of resolution for surface wave tomography in North America, EOS Trans. Am. geophys. Un., 81, Fall. Meet. Suppl., F897.en_US
dc.identifier.citedreferenceBecker, T.W. & Boschi, L., 2002. A comparison of tomographic and geodynamic mantle models, Geochem., Geophys., Geosys., 3 ( 1 ), 1003, doi :.en_US
dc.identifier.citedreferenceBenz, H.M. & Vidale, J.E., 1993. The sharpness of upper mantle discontinuities determined from high-frequency P′P′ precursors, Nature, 365, 147 – 150.en_US
dc.identifier.citedreferenceBercovici, D. & Karato, S.-J., 2003. Whole mantle convection and the transition-zone water filter, Nature, 425, 39 – 44.en_US
dc.identifier.citedreferenceBina, C.R. & Helffrich, G.R., 1994. Phase transition clapeyron slopes and transition zone seismic discontinuity topography, J. geophys. Res., 99, 15 853 – 15 860.en_US
dc.identifier.citedreferenceBostock, N.G., 1996. Ps conversions from the upper mantle transition zone beneath the Canadian landmass, J. geophys. Res., 101, 8393 – 8402.en_US
dc.identifier.citedreferenceCourtillot, V., Davaillie, A., Besse, J. & Campbell, I.H., 2003. Three distinct types of hotspots in the Earth's mantle, Earth Planet. Sci. Lett., 205, 295 – 308.en_US
dc.identifier.citedreferenceCourtier, A.M. & Revenaugh, J., 2008. Slabs and shear wave reflectors in the midmantle, J. geophys. Res., 113, B08312, doi :.en_US
dc.identifier.citedreferenceDavies, G.F., 1988. Ocean bathymetry and mantle convection, 1. Large-scale flow and hotspots, J. geophys. Res., 93, 10 467 – 10 480.en_US
dc.identifier.citedreferenceDeuss, A., 2007. Seismic observations of transition-zone discontinuities beneath hotspot locations, in Plates, plumes and planetary processes, Special Paper 430, pp. 121 – 136, eds Foulger, G.R. & Jurdy, D.M., Geological Society, doi :.en_US
dc.identifier.citedreferenceDeuss, A. & Woodhouse, J.H., 2001. Seismic observations of splitting of the mid-transition zone discontinuity in the Earth's mantle, Science, 294, 354 – 357.en_US
dc.identifier.citedreferenceDeuss, A. & Woodhouse, J.H., 2002. A systematic search for mantle discontinuities using SS-precursors, Geophys. Res. Lett., 29, 1 – 4.en_US
dc.identifier.citedreferenceDeuss, A. & Woodhouse, J.H., 2004. The nature of the Lehmann discontinuity from its seismological Clapeyron slopes, Earth planet. Sci. Lett., 225, 295 – 304.en_US
dc.identifier.citedreferenceDixon, J.E. & Clague, D.A., 2001. Volume of basaltic glasses from Loihi seamount, Hawaii: evidence for a relatively dry plume component, J. Petrol., 42, 627 – 654.en_US
dc.identifier.citedreferenceDu, Z., Vinnik, L.P. & Foulger, G.R., 2006. Evidence from P -to- S mantle converted waves for a flat ‘660-km’ discontinuity beneath Iceland, Earth planet. Sci. Lett., 241, 271 – 280.en_US
dc.identifier.citedreferenceDziewonski, A.M. & Anderson, D.L., 1981. Preliminary reference Earth model, Phys. Earth planet. Inter., 25, 297 – 356.en_US
dc.identifier.citedreferenceDziewonski, A.M. & Gilbert, F., 1976. Effect of small, aspherical perturbations on travel times and re-examination of the corrections for ellipticity, Geophys. J. R. astr. Soc., 44, 7 – 16.en_US
dc.identifier.citedreferenceEbinger, C.J. & Sleep, N.H., 1998. Cenozoic magmatism throughout east Africa resulting from impact of a single plume, Nature, 395, 788 – 791.en_US
dc.identifier.citedreferenceEkstrÖm, G. & Dziewonski, A.M., 1998. The unique anisotropy of the Pacific upper mantle, Nature, 394, 168 – 172.en_US
dc.identifier.citedreferenceEscalante, C., Gu, Y.J. & Sacchi, M., 2007. Simultaneous iterative time-domain deconvolution to teleseismic receiver functions, Geophys. J. Int., 171, 316 – 325, doi :.en_US
dc.identifier.citedreferenceFarnetani, C.G., Bernard, L. & Tackley, P.J., 2002. Mixing and deformations in mantle plumes, Earth planet. Sci. Lett., 196, 1 – 15.en_US
dc.identifier.citedreferenceFee, D. & Dueker, K., 2004. Mantle transition zone topography and structure beneath the Yellowstone hotspot, Geophys. Res. Lett., 31, L18603, doi :.en_US
dc.identifier.citedreferenceFlanagan, M.P. & Shearer, P.M., 1998. Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors, J. geophys. Res., 103, 2673 – 2692.en_US
dc.identifier.citedreferenceFlanagan, M.P. & Shearer, P.M., 1999. A map of topography on the 410-km discontinuity from PP precursors, Geophys. Res. Lett., 26, 549 – 552.en_US
dc.identifier.citedreferenceFoulger, G.R., 2007. The “plate” model for the genesis of melting anomalies, Vol. 430, pp. 1 – 28, Geological Society of America Special Paper 430, 1 – 28.en_US
dc.identifier.citedreferenceFrost, D.J., 2003. The structure and sharpness of (Mg, Fe) 2 SiO 4 phase transformations in the transition zone, Earth planet. Sci. Lett., 216, 313 – 328.en_US
dc.identifier.citedreferenceFukao, Y., Widiyantoro, S. & Obayashi, M., 2001. Subduction slabs stagnant in the mantle transition zone, J. geophys. Res., 97, 4809 – 4822.en_US
dc.identifier.citedreferenceGaherty, J.B. & Jordan, T.H., 1995. Lehmann discontinuity as the base of an anisotropic layer beneath continents, Science, 268, 1468 – 1471.en_US
dc.identifier.citedreferenceGao, S.S., Silver, P.G., Liu, K.H. & Kaapvaal Seismic Group, 2002. Mantle discontinuities beneath Southern Africa, Geophys. Res. Lett., 29 ( 10 ), doi :.en_US
dc.identifier.citedreferenceGilbert, F., 1970. Excitation of the normal modes of the Earth by earthquake sources, Geophys. J. R. astr. Soc., 22, 223 – 226.en_US
dc.identifier.citedreferenceGilbert, J.H., Sheehan, A.F., Dueker, K.G. & Molnar, P., 2003. Receiver functions in the western United States, with implications for upper mantle structure and dynamics, J. geophys. Res., 108 ( B5 ), 2229, doi :.en_US
dc.identifier.citedreferenceGossler, J. & Kind, R., 1996. Seismic evidence for very deep roots of continents, Earth planet. Sci. Lett., 138, 1 – 13.en_US
dc.identifier.citedreferenceGrand, S.P., Van Der Hilst, R.D. & Widiyantoro, S., 1997. Global seismic tomography: a snapshot of convection in the Earth, GSA Today, 7, 1 – 7.en_US
dc.identifier.citedreferenceGu, Y.J. & An, Y., 2007. Searching for mantle plumes using high-resolution Radon transforms, available at http://www.mantleplumes.org.en_US
dc.identifier.citedreferenceGu, Y.J., Dziewonski, A.M. & Agee, C.B., 1998. Global de-correlation of the topography of transition zone discontinuities, Earth planet. Sci. Lett., 157, 57 – 67.en_US
dc.identifier.citedreferenceGu, Y.J. & Dziewonski, A.M., 2002. Global variability of transition zone thickness, J. geophys. Res., 107, doi :.en_US
dc.identifier.citedreferenceGu, Y.J., Dziewonski, A.M. & EkstrÖm, G., 2001. Preferential detection of the Lehmann discontinuity beneath continents, Geophys. Res. Lett., 28, 4655 – 4658.en_US
dc.identifier.citedreferenceGu, Y.J., Dziewonski, A.M. & EkstrÖm, G., 2003. Simultaneous inversion for mantle shear velocity and topography of transition zone discontinuities, Geophys. J. Int., 154, 559 – 583.en_US
dc.identifier.citedreferenceGu, Y.J., Lerner-Lam, A., Dziewonski, A.M. & EkstrÖm, G., 2005. Seismic evidence for deep anisotropy beneath the East Pacific Rise, Earth planet. Sci. Lett., 232, 259 – 272.en_US
dc.identifier.citedreferenceGu, Y.J. & Sacchi, M., 2009. Radon transform methods and their applications in mapping mantle reflectivity structures, Surv. Geophys., in press.en_US
dc.identifier.citedreferenceGung, Y., Panning, M. & Romanowicz, B., 2003. Global anisotropy and the thickness of continents, Nature, 422, 707 – 711.en_US
dc.identifier.citedreferenceHampson, D., 1986. Inverse velocity stacking for multiple elimination, J. Can. Soc. Expl. Geophys., 22 ( 1 ), 44 – 55.en_US
dc.identifier.citedreferenceHelffrich, G. & Bina, C., 1994. Frequency dependence of the visibility and depths of mantle seismic discontinuities, Geophys. Res. Lett., 21, 2613 – 2616.en_US
dc.identifier.citedreferenceHelffrich, G. & Wood, B., 1996. 410 km discontinuity sharpness and the form of the olivine-phase diagram: resolution of apparent seismic contradictions, Geophys. J. Int., 126, 7 – 12.en_US
dc.identifier.citedreferenceHirose, K., 2002. Phase transitions in pyrolitic mantle around 670-km depth: implications for upwelling of plumes from the lower mantle, J. geophys. Res., 107, doi :.en_US
dc.identifier.citedreferenceHirschmann, M.M., 2006. Water, melting and the deep Earth H 2 O cycle, Ann. Rev. Earth Planet. Sci., 34, 629 – 653.en_US
dc.identifier.citedreferenceHirth, G. & Kohlstedt, D.L., 1996. Water in the oceanic upper mantle; implications for rheology, melt extraction and the evolution of the lithosphere, Earth planet. Sci Lett., 144, 93 – 108.en_US
dc.identifier.citedreferenceHouser, C., Masters, G., Flanagan, M. & Shearer, P.M., 2008. Determination and analysis of long-wavelength transition zone structure using SS precursors, Geophys. J. Int., 174, 178 – 194, doi :.en_US
dc.identifier.citedreferenceHung, S.H., Shen, Y. & Chiao, L.Y., 2004. Imaging seismic structure beneath the Iceland hotspot: A finite frequency approach, J. geophys. Res., 109, B08305, doi :.en_US
dc.identifier.citedreferenceIta, J.J. & Stixrude, L., 1992. Petrology, elasticity and composition of the transition zone, J. geophys. Res., 97, 6849 – 6866.en_US
dc.identifier.citedreferenceIto, E. & Takahashi, E., 1989. Postspinel transformations in the system Mg 2 SiO 4 –Fe 2 SiO 4 and some geophysical implications, J. geophys. Res., 94, 10 637 – 10 646.en_US
dc.identifier.citedreferenceIto, G., Shen, Y., Hirth, G. & Wolfe, C.J., 1999. Mantle flow, melting, and dehydration of the Iceland mantle plume, Earth planet. Sci. Lett., 165, 81 – 96.en_US
dc.identifier.citedreferenceJamtveit, B., Brooker, R., Brooks, K., Melchior Larsen, L. & Pedersen, T., 2001. The water content of olivine from the North Atlantic Volcanic Province, Earth planet. Sci. Lett., 186, 401 – 415.en_US
dc.identifier.citedreferenceJavoy, M., 1999. Chemical Earth models, C. R. Acad. Sci. Paris, 329, 537 – 555.en_US
dc.identifier.citedreferenceJordan, T.H., 1975. The continental lithosphere, Rev. Geophys. Space Phys., 13, 1 – 12.en_US
dc.identifier.citedreferenceJordan, T.H., 1981. Global tectonic regionalization for seismological data analysis, Bull. Seismol. Soc. Am., 71, 1131 – 1141.en_US
dc.identifier.citedreferenceKarato, S.-I., 1992. On the Lehmann discontinuity, Geophys. Res. Lett., 19, 2555 – 2558.en_US
dc.identifier.citedreferenceKarato, S.-I. & Jung, H., 1998. Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle, Earth planet. Sci. Lett., 157, 193 – 207.en_US
dc.identifier.citedreferenceKatsura, T. & Ito, E., 1989. The system Mg 2 S i O 4 –Fe 2 S i O 4 at high pressures and temperatures; precise determination of stabilities of olivine, modified spinel, and spinel, J. geophys. Res., 94, 15 663 – 15 670.en_US
dc.identifier.citedreferenceKellogg, L.H., Hager, B.H. & Van Der Hilst, R.D., 1999. Compositional stratification in the deep mantle, Science, 283, 1881 – 1884, doi :.en_US
dc.identifier.citedreferenceKennett, B.L.N. ( Compiler and Editor ), 1991. IASPEI 1991 Seismological Tables, Bibliotech, Canberra, Australia, 167 pp.en_US
dc.identifier.citedreferenceKovlenko, V.I., Naumov, V.B., Girnis, A.V., Dorofeeva, V.A. & Yarmolvuk, V.V., 2006. Composition and chemical structure of oceanic mantle plumes, Petrology, 452 – 476, doi :.en_US
dc.identifier.citedreferenceKubo, T. et al. 2002. Metastable garnet in oceanic crust at the top of the lower mantle, Nature, 420, 803 – 806.en_US
dc.identifier.citedreferenceKustowski, B., EkstrÖm, G. & Dziewoński, A.M., 2008. Anisotropic shear-wave velocity structure of the Earth's mantle: a global model, J. geophys. Res., 113, B06306, doi :.en_US
dc.identifier.citedreferenceLakshtanov, D. et al. 2007. The post-stishovite phase transition in hydrous aliuminum-bearing SiO 2 in the lower mantle of the Earth, Proc. Nat. Acad. Sci., 104, 13 588 – 13 590.en_US
dc.identifier.citedreferenceLay, T., 2005. The deep mantle thermal-chemical boundary layer: the putative mantle plume source, Geological Society of America, Special Paper 388. 188 – 205.en_US
dc.identifier.citedreferenceLe Stunff, Y., Wicks, C.W. Jr. & Romanowicz, B., 1995. P′P′ precursors under Africa: evidence for mid-mantle reflectors, Science, 270, 74 – 77.en_US
dc.identifier.citedreferenceLawrence, J.F. & Shearer, P.M., 2006. A global study of transition zone thickness using receiver functions, J. geophys. Res., 111, doi :.en_US
dc.identifier.citedreferenceLehmann, I., 1959. Velocities of longitudinal waves in the upper part of the Earth's mantle, Geophys. J. R. astr. Soc., 15, 93 – 113.en_US
dc.identifier.citedreferenceLi, A., Fischer, K.M., Van Der Lee, S. & Wysession, M., 2002. Crust and upper mantle discontinuity structure beneath eastern North America, J. geophys. Res., 107, doi :.en_US
dc.identifier.citedreferenceLi, X., Kind, R., Priestley, K., Sobolev, S.V., Tilmann, F., Yuan, X. & Weber, M., 2000. Mapping the Hawaiian plume conduit with converted seismic waves, Nature, 427, 827 – 829.en_US
dc.identifier.citedreferenceLin, S.-C., Kuo, B.-Y., Chiao, L.-Y. & van Keken, P.E., 2005. Thermal plume models and melt generation in East Africa: a dynamic modeling approach, Earth planet. Sci. Lett., 237, 175 – 192.en_US
dc.identifier.citedreferenceManglik, A. & Christensen, U.R., 2006. Effect of lithospheric root on decompression melting in plume-lithosphere interaction models, Geophys. J. Int., 164, 259 – 270.en_US
dc.identifier.citedreferenceMasters, G., Laske, G., Bolton, H. & Dziewonski, A., 2000. The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure, AGU Monogr. ser. ‘Seismol. Miner. Phys.’, 117, 63 – 87.en_US
dc.identifier.citedreferenceMegnin, C. & Romanowicz, B., 2000. The 3-D shear velocity structure of the mantle from the version of body, surface and high mode waveforms, Geophys. J. Int., 143, 709 – 728.en_US
dc.identifier.citedreferenceMontelli, R., Nolet, G., Dahlen, F.A., Masters, G., Engdah, E.R. & Hung, S.H., 2004. Finite-frequency tomography reveals a variety of plumes in the mantle, Science, 303, 338 – 343.en_US
dc.identifier.citedreferenceMorgan, W.J., 1971. Convection plumes in the lower mantle, Nature, 230, 42 – 43.en_US
dc.identifier.citedreferenceNataf, H.-C., 2000. Seismic imaging of mantle plumes, Annu. Rev. Earth planet Sci., 28, 391 – 417.en_US
dc.identifier.citedreferenceNeele, F., de Regt, H. & Van Decar, J., 1997. Gross errors in upper-mantle discontinuity topography from underside reflection data, Geophys. J. Int., 129, 194 – 204.en_US
dc.identifier.citedreferenceNichols, A.R., Carroll, M.R. & Hoskuldsson, A., 2002. Is the Iceland hotspot also wet? Evidence from submarine and subglacial pillow basalts, Earth planet. Sci. Lett., 202, doi :.en_US
dc.identifier.citedreferenceNiu, F. & Kawakatsu, H., 1997. Depth variation of the mid-mantle seismic discontinuity, Geophys. Res. Lett., 24 ( 4 ), 429 – 432.en_US
dc.identifier.citedreferenceNiu, F., Solomon, S.C., Silver, P.G., Suetsugu, D. & Inoue, H., 2002. Mantle transition-zone structure beneath the South Pacific Superswell and evidence for a mantle plume underlying the Society hotspot, Earth planet. Sci. Lett., 198, 371 – 380.en_US
dc.identifier.citedreferenceNiu, F., Kawakatsu, H. & Fukao, Y., 2003. Seismic evidence for a chemical heterogeneity in the midmantle: a strong and slightly dipping seismic reflector beneath the Mariana subduction zone, J. geophys. Res., 108 ( B9 ), 2419, doi :.en_US
dc.identifier.citedreferenceNolet, G. & Ziehuis, A., 1994. Low S velocities under the Tornquist-Teisseyre zone: evidence for water injection into the transition zone by subduction. J. geophys. Res., 99, 15813 – 15820.en_US
dc.identifier.citedreferenceNolet, G., Karato, S.-I. & Montelli, R., 2006. Plume fluxes from seismic tomography, Earth planet. Sci. Lett., 248, 685 – 699.en_US
dc.identifier.citedreferenceOhtani, E., Shibata, T., Kubo, T. & Kato, T., 1995. Stability of hydrous phases in the transition zone and the upper most part of the lower mantle, Geophys. Res. Lett., 22, 2553 – 2556.en_US
dc.identifier.citedreferencePanning, M. & Romanowicz, B., 2006. A three-dimensional radially anisotropic shear velocity in the whole mantle, Geophys. J. Int., 167, 361 – 379.en_US
dc.identifier.citedreferencePapoulis, A., 1962. The Fourier Integral and its Applications, McGraw-Hill, New York.en_US
dc.identifier.citedreferencePresnall, D.C., 1995. Phase diagrams of Earth-forming minerals, in Mineral Physics and Crystallography: A Handbook of Physical Constants, Am. geophys. Un., Washington, DC.en_US
dc.identifier.citedreferenceRevenaugh, J. & Jordan, T.H., 1991. Mantle Layering From ScS Reverberations 3. The Upper Mantle, J. geophys. Res., 96, 19781 – 19810.en_US
dc.identifier.citedreferenceRevenaugh, J. & Sipkin, S.A., 1994. Seismic evidence for silicate melt atop the 410-km mantle discontinuity, Nature, 369, 474 – 476.en_US
dc.identifier.citedreferenceRingwood, A.E., 1975. Composition and Petrology of the Earth's Mantle, McGraw-Hill, 630 pp.en_US
dc.identifier.citedreferenceRitsema, J., Van Heijst, H.J. & Woodhouse, J.H., 1999. Complex shear wave velocity structure imaged beneath Africa and Iceland, Science, 286, 1925 – 1928.en_US
dc.identifier.citedreferenceRitsema, J.H., van Heijst, J. & Woodhouse, J.H., 2004. Global transition zone tomography, J. geophys. Res., 109, doi :.en_US
dc.identifier.citedreferenceRomanowicz, B., 2003. Global mantle tomography: progress status in the last 10 years, Annu. Rev. Geophys. Space Phys, 31, 303 – 328.en_US
dc.identifier.citedreferenceRost, S., Garnero, E.J., William, Q. & Manga, M., 2005. Seismological constraints on a possible plume root at the core-mantle boundary, Nature, 435, 666 – 669.en_US
dc.identifier.citedreferenceRost, S., Garnero, E.J. & Wiliam, Q., 2008. Seismic array detection of subducted oceanic crust in the lower mantle, J. geophys. Res., 113, B06303, doi :.en_US
dc.identifier.citedreferenceRost, S. & Thomas, C., 2009. Improving seismic resolution through array processing techniques, Surv. Geophys., in press.en_US
dc.identifier.citedreferenceRyberg, T., Wenzel, F., Egorkin, A.V. & Solodilov, L., 1997. Short-period observation of the 520 km discontinuity in northern Eurasia, J. geophys. Res. 102, 5413 – 5422.en_US
dc.identifier.citedreferenceSacchi, M. & Ulrych, T.J., 1995. High-resolution velocity gathers and offset space reconstruction, Geophysics, 60, 1169 – 1177.en_US
dc.identifier.citedreferenceSaikia, A., Frost, D. & Rubie, D., 2008. Splitting of the 520-kilometer seismic discontinuity and chemical heterogeneity in the mantle, Science, 319, 1515 – 1518.en_US
dc.identifier.citedreferenceSchmerr, N. & Garnero, E.J., 2006. Investigation of upper mantle discontinuity structure beneath the central Pacific using SS precursors, J. geophys. Res., doi :.en_US
dc.identifier.citedreferenceSchmerr, N. & Garnero, E.J., 2007. Upper mantle discontinuity topography from thermal and chemical heterogeneity, Science, 318, 623 – 626.en_US
dc.identifier.citedreferenceShearer, P.M., 1990. Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity, Nature, 344, 121 – 126.en_US
dc.identifier.citedreferenceShearer, P.M., 1991. Imaging global body-wave phases by stacking long-period seismograms, J. geophys. Res., 96, 20,353 – 20,364.en_US
dc.identifier.citedreferenceShearer, P.M., 1993. Global mapping of upper mantle reflectors from long-period SS precursors, Geophys. J. Int., 115, 878 – 904.en_US
dc.identifier.citedreferenceShearer, P.M., 1996. Transition zone velocity gradients and the 520-km discontinuity, J. geophys. Res., 101, 3053 – 3066.en_US
dc.identifier.citedreferenceShen, Y. et al. 2002. Seismic evidence for a tilted mantle plume and north–south mantle flow beneath Iceland, Earth planet. Sci. Lett., 197, 262 – 272.en_US
dc.identifier.citedreferenceShen, Y., Wolfe, C.J. & Solomon, S.C., 2003. Seismological evidence for a mid-mantle discontinuity beneath Hawaii and Iceland, Earth planet. Sci. Lett., 214, 143 – 151.en_US
dc.identifier.citedreferenceShieh, S.R., Mao, H., Hemley, R.J. & Ming, L.C., 1998. Decomposition of phase D in the lower mantle and the fate of dense hydrous silicates in subducting slabs, Earth planet. Sci. Lett., 159, 13 – 23.en_US
dc.identifier.citedreferenceSilveira, G., Stutzmann, E., Davaille, A., Montagner, J.-P., Mendes-Victor, L. & Sebai, A., 2006. Azores hotspot signature in the upper mantle, J. Volc. Geotherm. Res., 156, doi :.en_US
dc.identifier.citedreferenceSleep, N.H., 1990. Hotspots and mantle plumes: some phenomenology, J. geophys. Res., 95, 6715 – 6736.en_US
dc.identifier.citedreferenceSleep, N.H., Einger, C.J. & Kendall, J.-M., 2002. Deflection of mantle plume material by cratonic keels, in The Earth: Physical, Chemical and Biological Development, 199, pp. 135 – 150, eds Fowler, C.M.R., Ebinger, C.J. & Hawkesworth, C.J., Geological Society of London Special Publication.en_US
dc.identifier.citedreferenceSteinberger, B., Sutherland, R. & O'Connell, R.J., 2004. Prediction of emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow, Nature, 430, 167 – 173.en_US
dc.identifier.citedreferenceSteinberger, B. & Antretter, M., 2006. Conduit diameter and buoyant rising speed of mantle plumes: implications for the motion of hot spots and shape of plume conduits, Geochem. Geophys. Geosyst., 7, Q11018, doi :.en_US
dc.identifier.citedreferenceSu, W.J., Woodward, R.L. & Dziewonski, A.M., 1994. Degree-12 model of shear velocity heterogeneity in the mantle. J. geophys. Res., 99, 6945 – 6980.en_US
dc.identifier.citedreferenceTackley, P.J. Stevenson, D.J., Glatzmaier, G. & Schubert, G., 1993. Effects of an endothermic phase transition at 670-km in a spherical model of the convection in the Earth's mantle, Nature, 361, 699 – 704.en_US
dc.identifier.citedreferenceTauzin, B., Debayle, E. & Wittlinger, G., 2008. The mantle transition zone as seen by global Pds phases: no clear evidence for a thin transition zone beneath hotspots, J. geophys. Res., 113, B08309, doi :.en_US
dc.identifier.citedreferenceThybo, H., Nielsen, L. & Perchuc, E., 2003. Seismic scattering at the top of the mantle Transition Zone, Earth planet. Sci Lett., 216, 259 – 269.en_US
dc.identifier.citedreferenceTrampert, J. & van Heijst, H., 2002. Global azimuthal anisotropy in the transition zone, Science, 296, 1297 – 1299.en_US
dc.identifier.citedreferenceVanacore, E., Niu, F. & Kawakatsu, H., 2006. Observations of the mid-mantle discontinuity beneath Indonesia from S to P converted waveforms, Geophys. Res. Lett., 33, L04302, doi :.en_US
dc.identifier.citedreferenceVan Der Hilst, R., Widiyantoro, S. & Engdahl, R., 1997. Evidence for deep mantle circulation from global tomography, Nature, 386, 578 – 584.en_US
dc.identifier.citedreferenceVan Der Hilst, R.D. & Karason, H., 1999. Compositional heterogeneity in the bottom 1000 kilometers of Earth's mantle: toward a hybrid convection model, Science, 286, 1925 – 1928.en_US
dc.identifier.citedreferenceVidale, J.E. & Benz, H.M., 1992. Upper-mantle seismic discontinuities and the thermal structure of subduction zones, Nature, 356, 678 – 683.en_US
dc.identifier.citedreferenceVinnik, L. & Farra, V., 2006. Svelocity reversal in the mantle transition zone, Geophys. Res. Lett., 33, L18316, doi :.en_US
dc.identifier.citedreferenceVisser, K., Trampert, J., Lebedev, S. & Kennet, B.L.N., 2008. Probability of radial anisotropy in the deep mantle, Earth planet. Sci. Lett., 270, 241 – 250.en_US
dc.identifier.citedreferenceWalker, D. & Agee, C., 1989. Partitioning ‘equilibrium,’ temperature gradients, and constraints on Earth differentiation, Earth planet. Sci. Lett., 96, 49 – 60.en_US
dc.identifier.citedreferenceWeidner, D.J. & Wang, Y., 1998. Chemical and Clapeyron-induced buoyancy at the 660 km discontinuity, J. geophys. Res., 103, 7431 – 7441.en_US
dc.identifier.citedreferenceWeidner, D.J. & Wang, Y., 2000. Phase transformations: implications for mantle structure, in Earth Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale ( Geophys. Monogr. Ser. ), Vol. 117, pp. 215 – 235, eds Karato, S., Forte, A.M., Liebermann, R.C., Masters, G. & Stixrude, L., American Geophysical Union, Washington, DC.en_US
dc.identifier.citedreferenceWessel, P. & Smith, W.H.F., 1995. The Generic Mapping Tools (GMT) version 3.0, Technical Reference & Cookbook, SOEST/NOAAen_US
dc.identifier.citedreferenceWilliams, Q. & Revenaugh, J., 2005. Ancient subduction, mantle ecologite, and the 300 km seismic discontinuity, Geology, 33, 1 – 4, doi :.en_US
dc.identifier.citedreferenceWen, L. & Anderson, D., 1997. Layered mantle convection: a model for geoid and topography and seismology, Earth Planet. Sci. Lett., 146, 367 – 377.en_US
dc.identifier.citedreferenceXu, W., Lithgow-Bertelloin, C., Stixrude, L. & Ritsema, J., 2008. The effect of bulk composition and temperature on mantle seismic structure, Earth Planet. Sci. Lett., 275, 70 – 79.en_US
dc.identifier.citedreferenceYoshino, T., Manthilake, G., Matsuzaki, T. & Katsura, T., 2008. Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite, Nature, 451, 326 – 329, doi :.en_US
dc.identifier.citedreferenceZhao, D., 2004. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics, Phys. Earth Planet Int., 146, 3 – 34.en_US
dc.identifier.citedreferenceZhou, Y., Nolet, G., Dahlen, F.A. & Laske, G., 2006. Global upper-mantle structure from finite-frequency surface wave tomography, J. geophys. Res., 111, B04304, doi :.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.