Model-based estimates of the finite population mean for two-stage cluster samples with unit non-response
dc.contributor.author | Yuan, Ying | en_US |
dc.contributor.author | Little, Roderick J. A. | en_US |
dc.date.accessioned | 2010-06-01T21:52:52Z | |
dc.date.available | 2010-06-01T21:52:52Z | |
dc.date.issued | 2007-01 | en_US |
dc.identifier.citation | Yuan, Ying; Little, Roderick J. A. (2007). "Model-based estimates of the finite population mean for two-stage cluster samples with unit non-response." Journal of the Royal Statistical Society: Series C (Applied Statistics) 56(1): 79-97. <http://hdl.handle.net/2027.42/74917> | en_US |
dc.identifier.issn | 0035-9254 | en_US |
dc.identifier.issn | 1467-9876 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/74917 | |
dc.format.extent | 643944 bytes | |
dc.format.extent | 3109 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Publishing Ltd | en_US |
dc.rights | 2007 Royal Statistical Society | en_US |
dc.subject.other | Cluster Sampling | en_US |
dc.subject.other | Non-ignorable Non-response | en_US |
dc.subject.other | Random-effects Model | en_US |
dc.subject.other | Unit Non-response | en_US |
dc.title | Model-based estimates of the finite population mean for two-stage cluster samples with unit non-response | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Statistics and Numeric Data | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | University of Michigan, Ann Arbor, USA | en_US |
dc.contributor.affiliationother | University of Texas M. D. Anderson Cancer Center, Houston, USA | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/74917/1/j.1467-9876.2007.00566.x.pdf | |
dc.identifier.doi | 10.1111/j.1467-9876.2007.00566.x | en_US |
dc.identifier.source | Journal of the Royal Statistical Society: Series C (Applied Statistics) | en_US |
dc.identifier.citedreference | Albert, J. and Chib, S. ( 1993 ) Bayesian analysis of binary and polychotomous response data. J. Am. Statist. Ass., 88, 669 – 679. | en_US |
dc.identifier.citedreference | Amemiya, T. ( 1984 ) Tobit models: a survey. J. Econometr., 24, 3 – 61. | en_US |
dc.identifier.citedreference | De Heer, W. ( 1999 ) International response trends: results of an international survey. J. Off. Statist., 15, 129 – 142. | en_US |
dc.identifier.citedreference | Gelfand, A. E., Hills, S. E., Racine-Poon, A. and Smith, A. F. M. ( 1990 ) Illustration of Bayesian inference in normal data models using Gibbs sampling. J. Am. Statist. Ass., 85, 972 – 985. | en_US |
dc.identifier.citedreference | Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. ( 2004 ) Bayesian Data Analysis, 2nd edn. New York: Chapman and Hall. | en_US |
dc.identifier.citedreference | Gelman, A. and Rubin, D. B. ( 1992 ) Inference from iterative simulation using multiple sequences. Statist. Sci., 7, 457 – 511. | en_US |
dc.identifier.citedreference | Groves, R. M. and Couper, M. P. ( 1998 ) Nonresponse in Household Interview Surveys. New York: Wiley. | en_US |
dc.identifier.citedreference | Heckman, J. I. ( 1976 ) The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. Ann. Econ. Socl Measmnt, 5, 475 – 492. | en_US |
dc.identifier.citedreference | Horvitz, D. G. and Thompson, D. J. ( 1952 ) A generalization of sampling without replacement from a finite population. J. Am. Statist. Ass., 47, 663 – 685. | en_US |
dc.identifier.citedreference | Johnson, V. E. ( 1996 ) Studying convergence of Markov Chain Monte Carlo algorithms using coupled sampled paths. J. Am. Statist. Ass., 91, 154 – 166. | en_US |
dc.identifier.citedreference | Kish, L. ( 1965 ) Survey Sampling. New York: Wiley. | en_US |
dc.identifier.citedreference | Krosnick, J. A. ( 1991 ) Response strategies for coping with the cognitive demands of attitude measures in surveys. Appl. Cogn. Psychol., 5, 213 – 236. | en_US |
dc.identifier.citedreference | Little, R. J. A. ( 2003 ) The Bayesian approach to sample survey inference. In Analysis of Survey Data ( eds R. L. Chambers and C. J. Skinner ), pp. 49 – 57. New York: Wiley. | en_US |
dc.identifier.citedreference | Little, R. J. A. ( 2004 ) To model or not to model?: competing modes of inference for finite population sampling. J. Am. Statist. Ass., 99, 546 – 556. | en_US |
dc.identifier.citedreference | Little, R. J. A. and An, H. ( 2004 ) Robust likelihood-based analysis of multivariate data with missing values. Statist. Sin., 14, 949 – 968. | en_US |
dc.identifier.citedreference | Little, R. J. A. and Rubin, D. B. ( 2002 ) Statistical Analysis with Missing Data, 2nd edn. New York: Wiley. | en_US |
dc.identifier.citedreference | Little, R. J. A. and Vartivarian, S. ( 2002 ) On weighting the rates in nonresponse weights. Statist. Med., 22, 1589 – 1599. | en_US |
dc.identifier.citedreference | Rubin, D. B. ( 1976 ) Inference and missing data (with discussion). Biometrika, 63, 581 – 592. | en_US |
dc.identifier.citedreference | Scott, A. and Smith, T. M. F. ( 1969 ) Estimation in multi-stage surveys. J. Am. Statist. Ass., 64, 830 – 840. | en_US |
dc.identifier.citedreference | Sverchkov, M. and Pfeffermann, D. ( 2004 ) Prediction of finite population totals based on the sample distribution. Surv. Methodol., 30, 79 – 92. | en_US |
dc.identifier.citedreference | Tanner, M. A. and Wong, W. H. ( 1987 ) The calculation of posterior distributions by data augmentation. J. Am. Statist. Ass., 82, 528 – 550. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.