Show simple item record

Multiple roles of the cytoskeleton in autophagy

dc.contributor.authorMonastyrska, Irynaen_US
dc.contributor.authorRieter, Esteren_US
dc.contributor.authorKlionsky, Daniel J.en_US
dc.contributor.authorReggiori, Fulvioen_US
dc.date.accessioned2010-06-01T22:30:34Z
dc.date.available2010-06-01T22:30:34Z
dc.date.issued2009-08en_US
dc.identifier.citationMonastyrska, Iryna; Rieter, Ester; Klionsky, Daniel J.; Reggiori, Fulvio (2009). "Multiple roles of the cytoskeleton in autophagy." Biological Reviews 84(3): 431-448. <http://hdl.handle.net/2027.42/75495>en_US
dc.identifier.issn1464-7931en_US
dc.identifier.issn1469-185Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75495
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19659885&dopt=citationen_US
dc.format.extent954728 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 Cambridge Philosophical Societyen_US
dc.subject.otherAutophagyen_US
dc.subject.otherAutophagosomeen_US
dc.subject.otherCvt Pathwayen_US
dc.subject.otherActinen_US
dc.subject.otherMicrotubulesen_US
dc.subject.otherCytoskeletonen_US
dc.titleMultiple roles of the cytoskeleton in autophagyen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum  Life Sciences Institute, and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationother  Department of Cell Biology and Institute of Biomembranes, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlandsen_US
dc.identifier.pmid19659885en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75495/1/j.1469-185X.2009.00082.x.pdf
dc.identifier.doi10.1111/j.1469-185X.2009.00082.xen_US
dc.identifier.sourceBiological Reviewsen_US
dc.identifier.citedreferenceAmano, A., Nakagawa, I. & Yoshimori, T. ( 2006 ). Autophagy in innate immunity against intracellular bacteria. J Biochem 140, 161 – 6.en_US
dc.identifier.citedreferenceAmos, L. A. ( 2004 ). Microtubule structure and its stabilisation. Org Biomol Chem 2, 2153 – 60.en_US
dc.identifier.citedreferenceAmos, L. A. & Schlieper, D. ( 2005 ). Microtubules and maps. Adv Protein Chem 71, 257 – 98.en_US
dc.identifier.citedreferenceAplin, A., Jasionowski, T., Tuttle, D. L., Lenk, S. E. & Dunn, W. A., Jr. ( 1992 ). Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles. J Cell Physiol 152, 458 – 66.en_US
dc.identifier.citedreferenceBelmont, L. D., Orlova, A., Drubin, D. G. & Egelman, E. H. ( 1999 ). A change in actin conformation associated with filament instability after Pi release. Proc Natl Acad Sci USA 96, 29 – 34.en_US
dc.identifier.citedreferenceBernales, S., McDonald, K. L. & Walter, P. ( 2006 ). Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4, e423.en_US
dc.identifier.citedreferenceBirmingham, C. L., Higgins, D. E. & Brumell, J. H. ( 2008 ). Avoiding death by autophagy: interactions of Listeria monocytogenes with the macrophage autophagy system. Autophagy 4, 368 – 71.en_US
dc.identifier.citedreferenceBoldogh, I. R., Yang, H. C., Nowakowski, W. D., Karmon, S. L., Hays, L. G., Yates, J. R., 3rd & Pon, L. A. ( 2001 ). Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast. Proc Natl Acad Sci USA 98, 3162 – 7.en_US
dc.identifier.citedreferenceBrown, S. S. ( 1999 ). Cooperation between microtubule- and actin-based motor proteins. Annu Rev Cell Dev Biol 15, 63 – 80.en_US
dc.identifier.citedreferenceCali, T., Galli, C., Olivari, S. & Molinari, M. ( 2008 ). Segregation and rapid turnover of EDEM1 by an autophagy-like mechanism modulates standard ERAD and folding activities. Biochem Biophys Res Commun 371, 405 – 10.en_US
dc.identifier.citedreferenceCheong, H. & Klionsky, D. J. ( 2008 ). Dual role of Atg1 in regulation of autophagy-specific PAS assembly in Saccharomyces cerevisiae. Autophagy 4, 724 – 6.en_US
dc.identifier.citedreferenceCooper, J. A. & Schafer, D. A. ( 2000 ). Control of actin assembly and disassembly at filament ends. Curr Opin Cell Biol 12, 97 – 103.en_US
dc.identifier.citedreferenceCross, R. A. ( 2004 ). Molecular motors: Dynein’s gearbox. Curr Biol 14, R355 – 6.en_US
dc.identifier.citedreferenceDe La Cruz, E. M., Wells, A. L., Rosenfeld, S. S., Ostap, E. M. & Sweeney, H. L. ( 1999 ). The kinetic mechanism of myosin V. Proc Natl Acad Sci USA 96, 13726 – 31.en_US
dc.identifier.citedreferenceDesai, A. & Mitchison, T. J. ( 1997 ). Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13, 83 – 117.en_US
dc.identifier.citedreferenceDunn, W. A., Jr., Cregg, J. M., Kiel, J. A., van der Klei, I. J., Oku, M., Sakai, Y., Sibirny, A. A., Stasyk, O. V. & Veenhuis, M. ( 2005 ). Pexophagy: the selective autophagy of peroxisomes. Autophagy 1, 75 – 83.en_US
dc.identifier.citedreferenceEvangelista, M., Klebl, B. M., Tong, A. H., Webb, B. A., Leeuw, T., Leberer, E., Whiteway, M., Thomas, D. Y. & Boone, C. ( 2000 ). A role for myosin-I in actin assembly through interactions with Vrp1p, Bee1p, and the Arp2/3 complex. J Cell Biol 148, 353 – 62.en_US
dc.identifier.citedreferenceFarre, J. C., Manjithaya, R., Mathewson, R. D. & Subramani, S. ( 2008 ). PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev Cell 14, 365 – 76.en_US
dc.identifier.citedreferenceFarre, J. C. & Subramani, S. ( 2004 ). Peroxisome turnover by micropexophagy: an autophagy-related process. Trends Cell Biol 14, 515 – 23.en_US
dc.identifier.citedreferenceFass, E., Shvets, E., Degani, I., Hirschberg, K. & Elazar, Z. ( 2006 ). Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. J Biol Chem 281, 36303 – 16.en_US
dc.identifier.citedreferenceFujita, N., Itoh, T., Omori, H., Fukuda, M., Noda, T. & Yoshimori, T. ( 2008 ). The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 19, 2092 – 100.en_US
dc.identifier.citedreferenceGee, M. A., Heuser, J. E. & Vallee, R. B. ( 1997 ). An extended microtubule-binding structure within the dynein motor domain. Nature 390, 636 – 9.en_US
dc.identifier.citedreferenceGeng, J. & Klionsky, D. J. ( 2008 ). The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. EMBO Rep 9, 859 – 64.en_US
dc.identifier.citedreferenceGibbons, I. R. ( 1996 ). The role of dynein in microtubule-based motility. Cell Struct Funct 21, 331 – 42.en_US
dc.identifier.citedreferenceGirao, H., Geli, M. I. & Idrissi, F. Z. ( 2008 ). Actin in the endocytic pathway: from yeast to mammals. FEBS Lett 582, 2112 – 9.en_US
dc.identifier.citedreferenceGoldstein, L. S. & Philp, A. V. ( 1999 ). The road less traveled: emerging principles of kinesin motor utilization. Annu Rev Cell Dev Biol 15, 141 – 83.en_US
dc.identifier.citedreferenceGorski, S. M., Chittaranjan, S., Pleasance, E. D., Freeman, J. D., Anderson, C. L., Varhol, R. J., Coughlin, S. M., Zuyderduyn, S. D., Jones, S. J. & Marra, M. A. ( 2003 ). A SAGE approach to discovery of genes involved in autophagic cell death. Curr Biol 13, 358 – 63.en_US
dc.identifier.citedreferenceGouin, E., Welch, M. D., Cossart, P. ( 2005 ). Actin-based motility of intracellular pathogens. Curr Opin Microbiol 8, 35 – 45.en_US
dc.identifier.citedreferenceGross, S. P., Vershinin, M. & Shubeita, G. T. ( 2007 ). Cargo transport: two motors are sometimes better than one. Curr Biol 17, R478 – 86.en_US
dc.identifier.citedreferenceGutierrez, M. G., Master, S. S., Singh, S. B., Taylor, G. A., Colombo, M. I. & Deretic, V. ( 2004 ). Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753 – 66.en_US
dc.identifier.citedreferenceHamasaki, M., Noda, T., Baba, M. & Ohsumi, Y. ( 2005 ). Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast. Traffic 6, 56 – 65.en_US
dc.identifier.citedreferenceHanada, T., Noda, N. N., Satomi, Y., Ichimura, Y., Fujioka, Y., Takao, T., Inagaki, F. & Ohsumi, Y. ( 2007 ). The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282, 37298 – 302.en_US
dc.identifier.citedreferenceHara, T., Takamura, A., Kishi, C., Iemura, S., Natsume, T., Guan, J. L. & Mizushima, N. ( 2008 ). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 181, 497 – 510.en_US
dc.identifier.citedreferenceHe, C., Song, H., Yorimitsu, T., Monastyrska, I., Yen, W. L., Legakis, J. E. & Klionsky, D. J. ( 2006 ). Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. J Cell Biol 175, 925 – 35.en_US
dc.identifier.citedreferenceHelfand, B. T., Chang, L. & Goldman, R. D. ( 2004 ). Intermediate filaments are dynamic and motile elements of cellular architecture. J Cell Sci 117, 133 – 41.en_US
dc.identifier.citedreferenceHuang, J. & Klionsky, D. J. ( 2007 ). Autophagy and human disease. Cell Cycle 6, 1837 – 49.en_US
dc.identifier.citedreferenceHuang, W. P., Scott, S. V., Kim, J. & Klionsky, D. J. ( 2000 ). The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem 275, 5845 – 51.en_US
dc.identifier.citedreferenceHunter, A. W. & Wordeman, L. ( 2000 ). How motor proteins influence microtubule polymerization dynamics. J Cell Sci 113, 4379 – 89.en_US
dc.identifier.citedreferenceHutchins, M. U., Veenhuis, M. & Klionsky, D. J. ( 1999 ). Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway. J Cell Sci 112, 4079 – 87.en_US
dc.identifier.citedreferenceJahreiss, L., Menzies, F. M. & Rubinsztein, D. C. ( 2008 ). The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic 9, 574 – 87.en_US
dc.identifier.citedreferenceKabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y. & Yoshimori, T. ( 2000 ). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19, 5720 – 8.en_US
dc.identifier.citedreferenceKabeya, Y., Mizushima, N., Yamamoto, A., Oshitani-Okamoto, S., Ohsumi, Y. & Yoshimori, T. ( 2004 ). LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117, 2805 – 12.en_US
dc.identifier.citedreferenceKaksonen, M., Sun, Y. & Drubin, D. G. ( 2003 ). A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115, 475 – 87.en_US
dc.identifier.citedreferenceKamada, Y., Funakoshi, T., Shintani, T., Nagano, K., Ohsumi, M. & Ohsumi, Y. ( 2000 ). Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150, 1507 – 13.en_US
dc.identifier.citedreferenceKim, I., Rodriguez-Enriquez, S. & Lemasters, J. J. ( 2007 ). Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462, 245 – 53.en_US
dc.identifier.citedreferenceKim, J., Huang, W. P. & Klionsky, D. J. ( 2001a ). Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J Cell Biol 152, 51 – 64.en_US
dc.identifier.citedreferenceKim, J., Kamada, Y., Stromhaug, P. E., Guan, J., Hefner-Gravink, A., Baba, M., Scott, S. V., Ohsumi, Y., Dunn, W. A., Jr. & Klionsky, D. J. ( 2001b ). Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J Cell Biol 153, 381 – 96.en_US
dc.identifier.citedreferenceKimura, S., Noda, T. & Yoshimori, T. ( 2008 ). Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct 33, 109 – 22.en_US
dc.identifier.citedreferenceKirisako, T., Baba, M., Ishihara, N., Miyazawa, K., Ohsumi, M., Yoshimori, T., Noda, T. & Ohsumi, Y. ( 1999 ). Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol 147, 435 – 46.en_US
dc.identifier.citedreferenceKirkegaard, K., Taylor, M. P. & Jackson, W. T. ( 2004 ). Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol 2, 301 – 14.en_US
dc.identifier.citedreferenceKlionsky, D. J., Cregg, J. M., Dunn, W. A., Jr., Emr, S. D., Sakai, Y., Sandoval, I. V., Sibirny, A., Subramani, S., Thumm, M., Veenhuis, M. & Ohsumi, Y. ( 2003 ). A unified nomenclature for yeast autophagy-related genes. Dev Cell 5, 539 – 45.en_US
dc.identifier.citedreferenceKlionsky, D. J., Cuervo, A. M., Dunn, W. A., Jr., Levine, B., van der Klei, I. & Seglen, P. O. ( 2007 ). How shall I eat thee? Autophagy 3, 413 – 6.en_US
dc.identifier.citedreferenceKÖchl, R., Hu, X. W., Chan, E. Y. & Tooze, S. A. ( 2006 ). Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic 7, 129 – 45.en_US
dc.identifier.citedreferenceKomatsu, M., Waguri, S., Koike, M., Sou, Y. S., Ueno, T., Hara, T., Mizushima, N., Iwata, J., Ezaki, J., Murata, S., Hamazaki, J., Nishito, Y., Iemura, S., Natsume, T., Yanagawa, T., Uwayama, J., Warabi, E., Yoshida, H., Ishii, T., Kobayashi, A., Yamamoto, M., Yue, Z., Uchiyama, Y., Kominami, E. & Tanaka, K. ( 2007 ). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149 – 63.en_US
dc.identifier.citedreferenceKondomerkos, D. J., Kalamidas, S. A., Kotoulas, O. B. & Hann, A. C. ( 2005 ). Glycogen autophagy in the liver and heart of newborn rats. The effects of glucagon, adrenalin or rapamycin. Histol Histopathol 20, 689 – 96.en_US
dc.identifier.citedreferenceKouno, T., Mizuguchi, M., Tanida, I., Ueno, T., Kanematsu, T., Mori, Y., Shinoda, H., Hirata, M., Kominami, E. & Kawano, K. ( 2005 ). Solution structure of microtubule-associated protein light chain 3 and identification of its functional subdomains. J Biol Chem 280, 24610 – 17.en_US
dc.identifier.citedreferenceKraft, C., Deplazes, A., Sohrmann, M. & Peter, M. ( 2008 ). Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol 10, 602 – 10.en_US
dc.identifier.citedreferenceKrendel, M. & Mooseker, M. S. ( 2005 ). Myosins: tails (and heads) of functional diversity. Physiology 20, 239 – 51.en_US
dc.identifier.citedreferenceLang, T., Schaeffeler, E., Bernreuther, D., Bredschneider, M., Wolf, D. H. & Thumm, M. ( 1998 ). Aut2p and Aut7p, two novel microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole. EMBO J 17, 3597 – 607.en_US
dc.identifier.citedreferenceLevine, B. ( 2005 ). Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120, 159 – 62.en_US
dc.identifier.citedreferenceLevine, B. ( 2007 ). Cell biology: autophagy and cancer. Nature 446, 745 – 7.en_US
dc.identifier.citedreferenceLevine, B. & Deretic, V. ( 2007 ). Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7, 767 – 77.en_US
dc.identifier.citedreferenceLevine, B. & Klionsky, D. J. ( 2004 ). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6, 463 – 77.en_US
dc.identifier.citedreferenceLevine, B. & Kroemer, G. ( 2008 ). Autophagy in the pathogenesis of disease. Cell 132, 27 – 42.en_US
dc.identifier.citedreferenceMaciver, S. K. & Hussey, P. J. ( 2002 ). The ADF/cofilin family: actin-remodeling proteins. Genome Biol 3, reviews3007.en_US
dc.identifier.citedreferenceMahaffy, R. E. & Pollard, T. D. ( 2006 ). Kinetics of the formation and dissociation of actin filament branches mediated by Arp2/3 complex. Biophys J 91, 3519 – 28.en_US
dc.identifier.citedreferenceMaiuri, M. C., Zalckvar, E., Kimchi, A. & Kroemer, G. ( 2007 ). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8, 741 – 52.en_US
dc.identifier.citedreferenceMallik, R. & Gross, S. P. ( 2004 ). Molecular motors: strategies to get along. Curr Biol 14, R971 – 82.en_US
dc.identifier.citedreferenceMann, S. S. & Hammarback, J. A. ( 1994 ). Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B. J Biol Chem 269, 11492 – 7.en_US
dc.identifier.citedreferenceMari, M. & Reggiori, F. ( 2007 ). Atg9 trafficking in the yeast Saccharomyces cerevisiae. Autophagy 3, 145 – 8.en_US
dc.identifier.citedreferenceMcGrath, J. L. ( 2005 ). Dynein motility: four heads are better than two. Curr Biol 15, R970 – 2.en_US
dc.identifier.citedreferenceMizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. ( 2008 ). Autophagy fights disease through cellular self-digestion. Nature 451, 1069 – 75.en_US
dc.identifier.citedreferenceMizushima, N., Yamamoto, A., Hatano, M., Kobayashi, Y., Kabeya, Y., Suzuki, K., Tokuhisa, T., Ohsumi, Y. & Yoshimori, T. ( 2001 ). Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152, 657 – 68.en_US
dc.identifier.citedreferenceMonastyrska, I., He, C., Geng, J., Hoppe, A. D., Li, Z. & Klionsky, D. J. ( 2008 ). Arp2 links autophagic machinery with the actin cytoskeleton. Mol Biol Cell 19, 1962 – 75.en_US
dc.identifier.citedreferenceMonastyrska, I., Shintani, T., Klionsky, D. J. & Reggiori, F. ( 2006 ). Atg11 directs autophagosome cargoes to the PAS along actin cables. Autophagy 2, 119 – 21.en_US
dc.identifier.citedreferenceMuller-Reichert, T., Chretien, D., Severin, F. & Hyman, A. A. ( 1998 ). Structural changes at microtubule ends accompanying GTP hydrolysis: information from a slowly hydrolyzable analogue of GTP, guanylyl (Α, Β) methylenediphosphonate. Proc Natl Acad Sci USA 95, 3661 – 6.en_US
dc.identifier.citedreferenceMullins, R. D. & Pollard, T. D. ( 1999 ). Structure and function of the Arp2/3 complex. Curr Opin Struct Biol 9, 244 – 9.en_US
dc.identifier.citedreferenceNakagawa, I., Amano, A., Mizushima, N., Yamamoto, A., Yamaguchi, H., Kamimoto, T., Nara, A., Funao, J., Nakata, M., Tsuda, K., Hamada, S. & Yoshimori, T. ( 2004 ). Autophagy defends cells against invading group A Streptococcus. Science 306, 1037 – 40.en_US
dc.identifier.citedreferenceNakatogawa, H., Ichimura, Y. & Ohsumi, Y. ( 2007 ). Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130, 165 – 78.en_US
dc.identifier.citedreferenceNogales, E. ( 1999 ). A structural view of microtubule dynamics. Cell Mol Life Sci 56, 133 – 42.en_US
dc.identifier.citedreferenceOgawa, M., Yoshimori, T., Suzuki, T., Sagara, H., Mizushima, N. & Sasakawa, C. ( 2005 ). Escape of intracellular Shigella from autophagy. Science 307, 727 – 31.en_US
dc.identifier.citedreferenceOhshiro, K., Rayala, S. K., El-Naggar, A. K. & Kumar, R. ( 2008 ). Delivery of cytoplasmic proteins to autophagosomes. Autophagy 4, 104 – 6.en_US
dc.identifier.citedreferenceOhsumi, Y. & Mizushima, N. ( 2004 ). Two ubiquitin-like conjugation systems essential for autophagy. Semin Cell Dev Biol 15, 231 – 6.en_US
dc.identifier.citedreferenceOnodera, J. & Ohsumi, Y. ( 2004 ). Ald6p is a preferred target for autophagy in yeast, Saccharomyces cerevisiae. J Biol Chem 279, 16071 – 6.en_US
dc.identifier.citedreferenceOverbye, A., Fengsrud, M. & Seglen, P. O. ( 2007 ). Proteomic analysis of membrane-associated proteins from rat liver autophagosomes. Autophagy 3, 300 – 22.en_US
dc.identifier.citedreferencePaglin, S., Lee, N. Y., Nakar, C., Fitzgerald, M., Plotkin, J., Deuel, B., Hackett, N., McMahill, M., Sphicas, E., Lampen, N. & Yahalom, J. ( 2005 ). Rapamycin-sensitive pathway regulates mitochondrial membrane potential, autophagy, and survival in irradiated MCF-7 cells. Cancer Res 65, 11061 – 70.en_US
dc.identifier.citedreferencePankiv, S., Clausen, T. H., Lamark, T., Brech, A., Bruun, J. A., Outzen, H., Overvatn, A., Bjorkoy, G. & Johansen, T. ( 2007 ). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282, 24131 – 45.en_US
dc.identifier.citedreferencePedrotti, B., Ulloa, L., Avila, J. & Islam, K. ( 1996 ). Characterization of microtubule-associated protein MAP1B: phosphorylation state, light chains, and binding to microtubules. Biochemistry 35, 3016 – 23.en_US
dc.identifier.citedreferencePollard, T. D. ( 2003 ). The cytoskeleton, cellular motility and the reductionist agenda. Nature 422, 741 – 5.en_US
dc.identifier.citedreferencePrinz, W. A., Grzyb, L., Veenhuis, M., Kahana, J. A., Silver, P. A. & Rapoport, T. A. ( 2000 ). Mutants affecting the structure of the cortical endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Biol 150, 461 – 74.en_US
dc.identifier.citedreferenceRavikumar, B., Acevedo-Arozena, A., Imarisio, S., Berger, Z., Vacher, C., O’Kane, C. J., Brown, S. D. & Rubinsztein, D. C. ( 2005 ). Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet 37, 771 – 6.en_US
dc.identifier.citedreferenceReggiori, F. ( 2006 ). 1. Membrane origin for autophagy. Curr Top Dev Biol 74, 1 – 30.en_US
dc.identifier.citedreferenceReggiori, F. & Klionsky, D. J. ( 2002 ). Autophagy in the eukaryotic cell. Eukaryot Cell 1, 11 – 21.en_US
dc.identifier.citedreferenceReggiori, F. & Klionsky, D. J. ( 2005 ). Autophagosomes: biogenesis from scratch? Curr Opin Cell Biol 17, 415 – 22.en_US
dc.identifier.citedreferenceReggiori, F., Monastyrska, I., Shintani, T. & Klionsky, D. J. ( 2005a ). The actin cytoskeleton is required for selective types of autophagy, but not nonspecific autophagy, in the yeast Saccharomyces cerevisiae. Mol Biol Cell 16, 5843 – 56.en_US
dc.identifier.citedreferenceReggiori, F., Shintani, T., Nair, U. & Klionsky, D. J. ( 2005b ). Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy 1, 101 – 9.en_US
dc.identifier.citedreferenceReggiori, F., Tucker, K. A., Stromhaug, P. E. & Klionsky, D. J. ( 2004 ). The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell 6, 79 – 90.en_US
dc.identifier.citedreferenceRubinsztein, D. C., Ravikumar, B., Acevedo-Arozena, A., Imarisio, S., O’Kane, C. J. & Brown, S. D. ( 2005 ). Dyneins, autophagy, aggregation and neurodegeneration. Autophagy 1, 177 – 8.en_US
dc.identifier.citedreferenceSagiv, Y., Legesse-Miller, A., Porat, A. & Elazar, Z. ( 2000 ). GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J 19, 1494 – 504.en_US
dc.identifier.citedreferenceSeglen, P. O., Berg, T. O., Blankson, H., Fengsrud, M., Holen, I. & Stromhaug, P. E. ( 1996 ). Structural aspects of autophagy. Adv Exp Med Biol 389, 103 – 11.en_US
dc.identifier.citedreferenceShih, Y. L. & Rothfield, L. ( 2006 ). The bacterial cytoskeleton. Microbiol Mol Biol Rev 70, 729 – 54.en_US
dc.identifier.citedreferenceShintani, T., Huang, W. P., Stromhaug, P. E. & Klionsky, D. J. ( 2002 ). Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev Cell 3, 825 – 37.en_US
dc.identifier.citedreferenceShintani, T. & Klionsky, D. J. ( 2004a ). Autophagy in health and disease: a double-edged sword. Science 306, 990 – 5.en_US
dc.identifier.citedreferenceShintani, T. & Klionsky, D. J. ( 2004b ). Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J Biol Chem 279, 29889 – 94.en_US
dc.identifier.citedreferenceStukalin, E. B. & Kolomeisky, A. B. ( 2006 ). ATP hydrolysis stimulates large length fluctuations in single actin filaments. Biophys J 90, 2673 – 85.en_US
dc.identifier.citedreferenceSuzuki, K., Kubota, Y., Sekito, T. & Ohsumi, Y. ( 2007 ). Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12, 209 – 18.en_US
dc.identifier.citedreferenceSuzuki, K. & Ohsumi, Y. ( 2007 ). Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 581, 2156 – 61.en_US
dc.identifier.citedreferenceTanida, I., Ueno, T. & Kominami, E. ( 2004 ). LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36, 2503 – 18.en_US
dc.identifier.citedreferenceTaylor, M. P. & Kirkegaard, K. ( 2008 ). Potential subversion of autophagosomal pathway by picornaviruses. Autophagy 4, 286 – 9.en_US
dc.identifier.citedreferenceVale, R. D. ( 2003 ). The molecular motor toolbox for intracellular transport. Cell 112, 467 – 80.en_US
dc.identifier.citedreferencevan der Vaart, A., Mari, M. & Reggiori, F. ( 2008 ). A picky eater: exploring the mechanisms of selective autophagy in human pathologies. Traffic 9, 281 – 9.en_US
dc.identifier.citedreferenceVavylonis, D., Yang, Q. & O’Shaughnessy, B. ( 2005 ). Actin polymerization kinetics, cap structure, and fluctuations. Proc Natl Acad Sci USA 102, 8543 – 8.en_US
dc.identifier.citedreferenceWang, Z., Khan, S. & Sheetz, M. P. ( 1995 ). Single cytoplasmic dynein molecule movements: characterization and comparison with kinesin. Biophys J 69, 2011 – 23.en_US
dc.identifier.citedreferenceWebb, J. L., Ravikumar, B. & Rubinsztein, D. C. ( 2004 ). Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. Int J Biochem Cell Biol 36, 2541 – 50.en_US
dc.identifier.citedreferenceWeisenberg, R. C. & Deery, W. J. ( 1976 ). Role of nucleotide hydrolysis in microtubule assembly. Nature 263, 792 – 3.en_US
dc.identifier.citedreferenceWells, A. L., Lin, A. W., Chen, L. Q., Safer, D., Cain, S. M., Hasson, T., Carragher, B. O., Milligan, R. A. & Sweeney, H. L. ( 1999 ). Myosin VI is an actin-based motor that moves backwards. Nature 401, 505 – 8.en_US
dc.identifier.citedreferenceWinder, S. J. & Ayscough, K. R. ( 2005 ). Actin-binding proteins. J Cell Sci 118, 651 – 4.en_US
dc.identifier.citedreferenceXie, Z. & Klionsky, D. J. ( 2007 ). Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9, 1102 – 9.en_US
dc.identifier.citedreferenceXie, Z., Nair, U. & Klionsky, D. J. ( 2008 ). Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 19, 3290 – 8.en_US
dc.identifier.citedreferenceYap, G. S., Ling, Y. & Zhao, Y. ( 2007 ). Autophagic elimination of intracellular parasites: convergent induction by IFN-Γ and CD40 ligation? Autophagy 3, 163 – 5.en_US
dc.identifier.citedreferenceYorimitsu, T. & Klionsky, D. J. ( 2005a ). Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol Biol Cell 16, 1593 – 605.en_US
dc.identifier.citedreferenceYorimitsu, T. & Klionsky, D. J. ( 2005b ). Autophagy: molecular machinery for self-eating. Cell Death Differ 12 Suppl 2, 1542 – 52.en_US
dc.identifier.citedreferenceYoung, A. R. J., Chan, E. Y. W., Hu, X. W., KÖchl, R., Crawshaw, S. G., High, S., Hailey, D. W., Lippincott-Schwartz, J. & Tooze, S. A. ( 2006 ). Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 119, 3888 – 900.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.