Show simple item record

Illumination and annealing characteristics of two-dimensional electron gas systems in metal-organic vapor-phase epitaxy grown AlxGa1−xN/AlN/GaNAlxGa1−xN∕AlN∕GaN heterostructures

dc.contributor.authorBiyikli, N.en_US
dc.contributor.authorÖzgür, Ü.en_US
dc.contributor.authorNi, X.en_US
dc.contributor.authorFu, Y.en_US
dc.contributor.authorMorkoç, H.en_US
dc.contributor.authorKurdak, Ç.en_US
dc.date.accessioned2011-11-15T16:06:32Z
dc.date.available2011-11-15T16:06:32Z
dc.date.issued2006-11-15en_US
dc.identifier.citationBiyikli, N.; Özgür, Ü.; Ni, X.; Fu, Y.; Morkoç, H.; Kurdak, Ç. (2006). "Illumination and annealing characteristics of two-dimensional electron gas systems in metal-organic vapor-phase epitaxy grown AlxGa1−xN/AlN/GaNAlxGa1−xN∕AlN∕GaN heterostructures." Journal of Applied Physics 100(10): 103702-103702-6. <http://hdl.handle.net/2027.42/87688>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87688
dc.description.abstractWe studied the persistent photoconductivity (PPC) effect in AlxGa1−xN/AlN/GaNAlxGa1−xN∕AlN∕GaN heterostructures with two different Al compositions (x = 0.15x=0.15 and x = 0.25x=0.25). The two-dimensional electron gas formed at the AlN/GaNAlN∕GaN heterointerface was characterized by Shubnikov-de Haas and Hall measurements. Using optical illumination, we were able to increase the carrier density of the Al0.15Ga0.85N/AlN/GaNAl0.15Ga0.85N∕AlN∕GaN sample from 1.6×1012 to 5.9×1012 cm−21.6×1012to5.9×1012cm−2, while the electron mobility was enhanced from 9540 to 21 400 cm2/V s9540to21400cm2∕Vs at T = 1.6 KT=1.6K. The persistent photocurrent in both samples exhibited a strong dependence on illumination wavelength, being highest close to the band gap and decreasing at longer wavelengths. The PPC effect became fairly weak for illumination wavelengths longer than ∼ 530 nm∼530nm and showed a more complex response with an initial negative photoconductivity in the infrared region of the spectrum (λ>700 nm)(λ>700nm). The maximum PPC efficiency for 390 nm390nm illumination was 0.011% and 0.005% for Al0.25Ga0.75N/AlN/GaNAl0.25Ga0.75N∕AlN∕GaN and Al0.15Ga0.85N/AlN/GaNAl0.15Ga0.85N∕AlN∕GaN samples, respectively. After illumination, the carrier density could be reduced by annealing the sample. Annealing characteristics of the PPC effect were studied in the 20–280 K20–280K temperature range. We found that annealing at 280 K280K was not sufficient for full recovery of the carrier density. In fact, the PPC effect occurs in these samples even at room temperature. Comparing the measurement results of two samples, the Al0.25Ga0.75N/AlN/GaNAl0.25Ga0.75N∕AlN∕GaN sample had a larger response to illumination and displayed a smaller recovery with thermal annealing. This result suggests that the energy scales of the defect configuration-coordinate diagrams for these samples are different, depending on their Al composition.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleIllumination and annealing characteristics of two-dimensional electron gas systems in metal-organic vapor-phase epitaxy grown AlxGa1−xN/AlN/GaNAlxGa1−xN∕AlN∕GaN heterostructuresen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Physics, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherDepartment of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87688/2/103702_1.pdf
dc.identifier.doi10.1063/1.2386950en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceS. N. Mohammad, A. Salvador, and H. Morkoç, Proc. IEEE 83, 1420 (1996).en_US
dc.identifier.citedreferenceM. A. Khan, M. S. Shur, J. N. Kuznia, Q. Chen, J. Burn, and W. Schaff, Appl. Phys. Lett. 66, 1083 (1995).en_US
dc.identifier.citedreferenceS. N. Mohammad, Z. F. Fan, A. Salvador, O. Aktas, A. E. Botchkarev, W. Kim, and H. Morkoç, Appl. Phys. Lett. 69, 1420 (1996).en_US
dc.identifier.citedreferenceY. F. Wu, B. P. Keller, S. Keller, D. Kapolnek, S. P. Denbaars, and U. K. Mishra, IEEE Electron Device Lett. 17, 455 (1996).en_US
dc.identifier.citedreferenceÖ. Aktaş, Z. F. Fan, A. Botchkarev, S. N. Mohammad, M. Roth, T. Jenkins, L. Kehias, and H. Morkoç, IEEE Electron Device Lett. 18, 293 (1997).en_US
dc.identifier.citedreferenceM. J. Manfra, L. N. Pfeiffer, K. W. West, H. L. Stormer, K. W. Baldwin, J. W. P. Hsu, and R. J. Molnar, Appl. Phys. Lett. 77, 2888 (2000).en_US
dc.identifier.citedreferenceL. McCarthy et al., Appl. Phys. Lett. 78, 2235 (2001).en_US
dc.identifier.citedreferenceI. P. Smorchkova et al., J. Appl. Phys. 90, 5196 (2001).en_US
dc.identifier.citedreferenceM. J. Manfra, K. W. Baldwin, A. M. Sergent, K. W. West, R. J. Molnar, and J. Caissie, Appl. Phys. Lett. 85, 5394 (2004).en_US
dc.identifier.citedreferenceC. Skierbiszewski et al., Appl. Phys. Lett. 86, 102106 (2005).en_US
dc.identifier.citedreferenceD. V. Lang and R. A. Logan, Phys. Rev. Lett. 39, 635 (1977).en_US
dc.identifier.citedreferenceR. Fletcher, E. Zaremba, M. D’Iorio, C. T. Foxon, and J. J. Harris, Phys. Rev. B 41, 10649 (1990).en_US
dc.identifier.citedreferenceJ. Klem, W. T. Masselink, D. Arnold, R. Fischer, T. J. Drummond, H. Morkoç, K. Lee, and M. S. Shur, J. Appl. Phys. 54, 5214 (1983).en_US
dc.identifier.citedreferenceC. Johnson, J. Y. Lin, H. X. Jiang, M. Asif Khan, and C. J. Sun, Appl. Phys. Lett. 68, 1808 (1996).en_US
dc.identifier.citedreferenceJ. Z. Li, J. Y. Lin, H. X. Jiang, A. Salvador, A. Botchkarev, and H. Morkoc, Appl. Phys. Lett. 69, 1474 (1996).en_US
dc.identifier.citedreferenceC. H. Qiu and J. I. Pankove, Appl. Phys. Lett. 70, 1983 (1997).en_US
dc.identifier.citedreferenceH. M. Chen, Y. F. Chen, M. C. Lee, and M. S. Feng, J. Appl. Phys. 82, 899 (1997).en_US
dc.identifier.citedreferenceM. T. Hirsch, J. A. Wolk, W. Walukiewicz, and E. E. Haller, Appl. Phys. Lett. 71, 1098 (1997).en_US
dc.identifier.citedreferenceG. Beadie, W. S. Rabinovich, A. E. Wickenden, D. D. Koleske, S. C. Binari, and J. A. Freitas, Jr., Appl. Phys. Lett. 71, 1092 (1997).en_US
dc.identifier.citedreferenceC. V. Reddy, K. Balakrishnan, H. Okumura, and S. Yoshida, Appl. Phys. Lett. 73, 244 (1998).en_US
dc.identifier.citedreferenceM. D. McCluskey, N. M. Johnson, C. G. Van de Walle, D. P. Bour, M. Kneissl, and W. Walukiewicz, Phys. Rev. Lett. 80, 4008 (1998).en_US
dc.identifier.citedreferenceC. Skierbiszewski, T. Suski, M. Leszczynski, M. Shin, M. Skowronski, M. D. Bremser, and R. F. Davis, Appl. Phys. Lett. 74, 3833 (1999).en_US
dc.identifier.citedreferenceK. C. Zeng, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 76, 1728 (2000).en_US
dc.identifier.citedreferenceJ. Z. Li, J. Y. Lin, H. X. Jiang, M. Asif Khan, and Q. Chen, J. Appl. Phys. 82, 1227 (1997).en_US
dc.identifier.citedreferenceT. Y. Lin, H. M. Chen, M. S. Tsai, Y. F. Chen, F. F. Fang, C. F. Lin, and G. C. Chi, Phys. Rev. B 58, 13793 (1998).en_US
dc.identifier.citedreferenceS. Elhamri et al., J. Appl. Phys. 88, 6583 (2000).en_US
dc.identifier.citedreferenceL. Shen et al., IEEE Electron Device Lett. 22, 457 (2001).en_US
dc.identifier.citedreferenceM. Miyoshi, H. Ishikawa, T. Egawa, K. Asai, M. Mouri, T. Shibata, M. Tanaka, and O. Oda, Appl. Phys. Lett. 85, 1710 (2004).en_US
dc.identifier.citedreferenceL. Hsu and W. Walukiewicz, J. Appl. Phys. 89, 1783 (2001).en_US
dc.identifier.citedreferenceJ. Antoszewski, M. Gracey, J. M. Dell, L. Faraone, T. A. Fisher, G. Parish, Y.-F. Wu, and U. K. Mishra, J. Appl. Phys. 87, 3900 (2000).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.