Show simple item record

Failure mode of laser welds in lap‐shear specimens of high strength low alloy (HSLA) steel sheets

dc.contributor.authorAsim, Kamranen_US
dc.contributor.authorLee, J.en_US
dc.contributor.authorPan, J.en_US
dc.date.accessioned2012-03-16T15:59:27Z
dc.date.available2013-05-01T17:24:41Zen_US
dc.date.issued2012-03en_US
dc.identifier.citationAsim, K. ; Lee, J. ; Pan, J. (2012). "Failure mode of laser welds in lapâ shear specimens of high strength low alloy (HSLA) steel sheets." Fatigue & Fracture of Engineering Materials & Structures 35(3). <http://hdl.handle.net/2027.42/90305>en_US
dc.identifier.issn8756-758Xen_US
dc.identifier.issn1460-2695en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90305
dc.description.abstractIn this paper, the failure mode of laser welds in lap‐shear specimens of non‐galvanized SAE J2340 300Y high strength low alloy steel sheets under quasi‐static loading conditions is examined based on experimental observations and finite element analyses. Laser welded lap‐shear specimens with reduced cross sections were made. Optical micrographs of the cross sections of the welds in the specimens before and after tests are examined to understand the microstructure and failure mode of the welds. Micro‐hardness tests were also conducted to provide an assessment of the mechanical properties in the base metal, heat‐affected and fusion zones. The micrographs indicate that the weld failure appears to be initiated from the base metal near the boundary of the base metal and the heat‐affected zone at a distance away from the pre‐existing crack tip, and the specimens fail due to the necking/shear of the lower left load carrying sheets. Finite element analyses based on non‐homogenous multi‐zone material models were conducted to model the ductile necking/shear failure and to obtain the J integral solutions for the pre‐existing cracks. The results of the finite element analyses are used to explain the ductile failure initiation sites and the necking/shear of the lower left load carrying sheets. The J integral solutions obtained from the finite element analyses based on the 3‐zone finite element model indicate that the J integral for the pre‐existing cracks at the failure loads are low compared to the fracture toughness and the specimens should fail in a plastic collapse or necking/shear mode. The effects of the sheet thickness on the failure mode were then investigated for laser welds with a fixed ratio of the weld width to the thickness. For the given non‐homogenous material model, the J integral solutions appear to be scaled by the sheet thickness. With consideration of the plastic collapse failure mode and fracture initiation failure mode, a critical thickness can be obtained for the transition of the plastic collapse or necking/shear failure mode to the fracture initiation failure mode. Finally, the failure load is expressed as a function of the sheet thickness according to the governing equations based on the two failure modes. The results demonstrate that the failure mode of welds of thin sheets depends on the sheet thickness, ductility of the base metal and fracture toughness of the heat‐affected zone. Therefore, failure criteria based on either the plastic collapse failure mode or the fracture initiation failure mode should be used cautiously for welds of thin sheets.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherShear Failureen_US
dc.subject.otherFailure Loaden_US
dc.subject.otherDuctile Fractureen_US
dc.subject.otherJ Integralen_US
dc.subject.otherLaser Welden_US
dc.subject.otherNeckingen_US
dc.titleFailure mode of laser welds in lap‐shear specimens of high strength low alloy (HSLA) steel sheetsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMechanical Engineering, The University of Michigan, Ann Arbor, Michigan 48109, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90305/1/j.1460-2695.2011.01609.x.pdf
dc.identifier.doi10.1111/j.1460-2695.2011.01609.xen_US
dc.identifier.sourceFatigue & Fracture of Engineering Materials & Structuresen_US
dc.identifier.citedreferenceSripichai, K., Asim, K., Jo, W. H., Pan, J. and Li, M. ( 2009 ) Fatigue behavior of laser welds in lap‐shear specimens of high strength low alloy (HSLA) steels. SAE Tech. Paper No. 2009–01‐0028. Society of Automotive Engineers, Warrendale, PA.en_US
dc.identifier.citedreferenceHsu, C. and Albright, C. E. ( 1991 ) Fatigue analysis of laser welded lap joints. Eng. Fract. Mech. 39, 575 – 580.en_US
dc.identifier.citedreferenceWang, P. C. and Ewing, K. M. ( 1991 ) A comparison of fatigue strengths: laser beam vs. resistance spot welds. Weld. J. 70, 43 – 47.en_US
dc.identifier.citedreferenceFlavenot, J. F., Deville, J. P., Diboine, A., Cantello, M. and Gobbi, S. L. ( 1993 ) Fatigue resistance of laser welded lap joints of steel sheets. Weld. World 31, 12 – 15.en_US
dc.identifier.citedreferenceWang, P. C. and Ewing, K. M. ( 1994 ) Effect of process parameters on the fatigue strength of laser beam welds. J. Laser App. 6, 14 – 22.en_US
dc.identifier.citedreferenceTerasaki, T., Sobue, T. and Kitamura, T. ( 2001 ) Study of fatigue strength of laser welded lap joint. Q. J. Japan Weld. Soc. 19, 507 – 512.en_US
dc.identifier.citedreferenceKaitanov, A. Y., Ozersky, A. D., Zabelin, A. M. and Kislov, V. S. ( 2002 ) Static and fatigue strengths of laser welded overlap joints with controlled penetration. Proc. SPIE 4644, 116 – 126.en_US
dc.identifier.citedreferenceCho, S. K., Yang, Y. S., Son, K. J. and Kim, J. Y. ( 2004 ) Fatigue strength in laser welding of the lap joint. Finite Elem. Anal. Des. 40, 1059 – 1070.en_US
dc.identifier.citedreferenceSripichai, K., Asim, K. and Pan J. ( 2011 ) Stress intensity factor solutions for estimation of fatigue lives of laser welds in lap‐shear specimens. Eng. Fract. Mech. 78, 1424 – 1440.en_US
dc.identifier.citedreferenceAsim, K., Sripichai, K. and Pan, J. ( 2011 ) Fatigue behavior of laser welds in lap‐shear specimens of high strength low alloy steel sheets. Submitted for publication in Int. J. Fatigue.en_US
dc.identifier.citedreferenceOno, M., Kabasawa, M. and Omura, M. ( 1997 ) Static and fatigue strength of laser‐welded lap joints in thin steel sheet. Weld. Int. 11, 462 – 467.en_US
dc.identifier.citedreferenceChien, W. Y., Friedman, P. A. and Pan, J. ( 2003 ) Failure prediction of aluminum laser‐welded blanks. Int. J. Damage Mech. 12, 193 – 223.en_US
dc.identifier.citedreferenceTaban, E., Deleu, E., Dhooge, A. and Kaluc, E. ( 2009 ) Laser welding of modified 12% Cr stainless steel: strength, fatigue, toughness, microstructure and corrosion properties. Mater. Des. 30, 1193 – 1200.en_US
dc.identifier.citedreferenceCasavola, C., Pappalettere, C. and Tattoli, F. ( 2009 ) Experimental and numerical study of static and fatigue properties of titanium alloy welded joints. Mech. Mater. 41, 231 – 243.en_US
dc.identifier.citedreferenceLee, J., Asim, K. and Pan, J. ( 2011 ) Modeling of failure mode of laser welds in lap‐shear specimens of HSLA steel sheets. Eng. Fract. Mech. 78, 374 – 396.en_US
dc.identifier.citedreferenceAnand, D., Chen, D. L., Bhole, S. D., Anderychuk, P. and Bourdeau, G. ( 2006 ) Fatigue behavior of tailor (laser)‐welded blanks for automotive applications. Mater. Sci. Eng. A 420, 199 – 207.en_US
dc.identifier.citedreferenceMei, L., Chen, G., Jin, X., Zhang, Y. and Wu, Q. ( 2009 ) Research on laser welding of high strength galvanized automobile steel sheets. Optics Lasers Eng. 47, 1117 – 1124.en_US
dc.identifier.citedreferenceRadaj, D., Zhaoyun, Z. and Möhrmann, W. ( 1990 ) Local stress parameters at the weld spot of various specimens. Eng. Fract. Mech. 37, 933 – 951.en_US
dc.identifier.citedreferenceWang, P. C. ( 1995 ) Fracture mechanics parameter for the fatigue resistance of laser welds. Int. J. Fatigue 17, 25 – 34.en_US
dc.identifier.citedreferenceRice, J. R. ( 1968 ) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. App. Mech. 35, 379 – 386.en_US
dc.identifier.citedreferenceABAQUS v6.7 User Manual ( 2007 ) SIMULIA. Providence, RI.en_US
dc.identifier.citedreferenceWang, Y. and Pan, J. ( 1999 ) Development of a multiaxial fatigue theory by considering constraint effects on small mixed mode cracks. Int. J. Solids Struct. 36, 4543 – 4562.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.