Show simple item record

Does sea level influence mid‐ocean ridge magmatism on Milankovitch timescales?

dc.contributor.authorLund, David C.en_US
dc.contributor.authorAsimow, Paul D.en_US
dc.date.accessioned2013-01-03T19:40:13Z
dc.date.available2013-01-03T19:40:13Z
dc.date.issued2011-12en_US
dc.identifier.citationLund, David C.; Asimow, Paul D. (2011). "Does sea level influence mid‐ocean ridge magmatism on Milankovitch timescales?." Geochemistry, Geophysics, Geosystems 12(12): n/a-n/a. <http://hdl.handle.net/2027.42/95108>en_US
dc.identifier.issn1525-2027en_US
dc.identifier.issn1525-2027en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/95108
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherAGUen_US
dc.subject.otherMilankovitchen_US
dc.subject.otherMagmatismen_US
dc.subject.otherSea Levelen_US
dc.titleDoes sea level influence mid‐ocean ridge magmatism on Milankovitch timescales?en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109, USAen_US
dc.contributor.affiliationotherDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/95108/1/ggge2035.pdf
dc.identifier.doi10.1029/2011GC003693en_US
dc.identifier.sourceGeochemistry, Geophysics, Geosystemsen_US
dc.identifier.citedreferencePerfit, M. R., and W. W. Chadwick ( 1998 ), Magmatism at mid‐ocean ridges: Constraints from volcanological and geochemical investigations, in Faulting and Magmatism at Mid‐Ocean Ridges, edited by W. R. Buck et al., pp. 59 – 115, AGU, Washington, D. C., doi: 10.1029/GM106p0059.en_US
dc.identifier.citedreferenceRuhlin, D. E., and R. M. Owen ( 1986 ), The rare‐earth element geochemistry of hydrothermal sediments from the east pacific rise: Examination of a seawater scavenging mechanism, Geochim. Cosmochim. Acta, 50 ( 3 ), 393 – 400, doi: 10.1016/0016‐7037(86)90192‐4.en_US
dc.identifier.citedreferenceScott, D. R., and D. J. Stevenson ( 1989 ), A self‐consistent model of melting, magma migration and buoyancy‐driven circulation beneath mid‐ocean ridges, J. Geophys. Res., 94 ( B3 ), 2973 – 2988, doi: 10.1029/JB094iB03p02973.en_US
dc.identifier.citedreferenceSharma, M., G. J. Wasserburg, A. W. Hofmann, and D. A. Butterfield ( 2000 ), Osmium isotopes in hydrothermal fluids from the Juan de Fuca Ridge, Earth Planet. Sci. Lett., 179 ( 1 ), 139 – 152, doi: 10.1016/S0012‐821X(00)00099‐6.en_US
dc.identifier.citedreferenceSharma, M., E. J. Rosenberg, and D. A. Butterfield ( 2007 ), Search for the proverbial mantle osmium sources to the oceans: Hydrothermal alteration of mid‐ocean ridge basalt, Geochim. Cosmochim. Acta, 71 ( 19 ), 4655 – 4667, doi: 10.1016/j.gca.2007.06.062.en_US
dc.identifier.citedreferenceSortor, R. N., and D. C. Lund ( 2011 ), No evidence for a deglacial intermediate water Δ 14 C anomaly in the SW Atlantic, Earth Planet. Sci. Lett., 310, 65 – 72, doi: 10.1016/j.epsl.2011.07.017.en_US
dc.identifier.citedreferenceSpeer, K. G., M. E. Maltrud, and A. M. Thurnherr ( 2003 ), A global view of dispersion above the mid‐ocean ridge, in Energy and Mass Transfer in Hydrothermal Systems, edited by P. E. Halbach, V. Tunnicliffe, and J. R. Hein, pp. 287 – 302, Dahlem Univ. Press, Berlin.en_US
dc.identifier.citedreferenceSpiegelman, M. ( 1993 a), Flow in deformable porous media. Part 1: Simple analysis, J. Fluid Mech., 247, 17 – 38, doi: 10.1017/S0022112093000369.en_US
dc.identifier.citedreferenceSpiegelman, M. ( 1993 b), Flow in deformable porous media. Part 2: Numerical analysis–the relationship between shock waves and solitary waves, J. Fluid Mech., 247, 39 – 63, doi: 10.1017/S0022112093000370.en_US
dc.identifier.citedreferenceSpiegelman, M. ( 1996 ), Geochemical consequences of melt transport in 2‐D: The sensitivity of trace elements to mantle, Earth Planet. Sci. Lett., 139 ( 1–2 ), 115 – 132, doi: 10.1016/0012‐821X(96)00008‐8.en_US
dc.identifier.citedreferenceSpiegelman, M., and T. Elliott ( 1993 ), Consequences of melt transport for uranium series disequilibrium in young lavas, Earth Planet. Sci. Lett., 118, 1 – 20, doi: 10.1016/0012‐821X(93)90155‐3.en_US
dc.identifier.citedreferenceSpiegelman, M., and D. McKenzie ( 1987 ), Simple 2‐D models for melt extraction at mid‐ocean ridges and island arcs, Earth Planet. Sci. Lett., 83 ( 1–4 ), 137 – 152, doi: 10.1016/0012‐821X(87)90057‐4.en_US
dc.identifier.citedreferenceStott, L., J. Southon, A. Timmermann, and A. Koutavas ( 2009 ), Radiocarbon age anomaly at intermediate water depth in the Pacific Ocean during the last deglaciation, Paleoceanography, 24, PA2223, doi: 10.1029/2008PA001690.en_US
dc.identifier.citedreferenceThompson, W. G., and S. L. Goldstein ( 2006 ), A radiometric calibration of the SPECMAP timescale, Quat. Sci. Rev., 25 ( 23–24 ), 3207 – 3215, doi: 10.1016/j.quascirev.2006.02.007.en_US
dc.identifier.citedreferenceThornalley, D. J. R., S. Barker, W. S. Broecker, H. Elderfield, and I. N. McCave ( 2011 ), The deglacial evolution of North Atlantic deep convection, Science, 331 ( 6014 ), 202 – 205, doi: 10.1126/science.1196812.en_US
dc.identifier.citedreferenceToner, B. M., S. C. Fakra, S. J. Manganini, C. M. Santelli, M. A. Marcus, J. Moffett, O. Rouxel, C. R. German, and K. J. Edwards ( 2009 ), Preservation of iron(II) by carbon‐rich matrices in a hydrothermal plume, Nat. Geosci., 2 ( 3 ), 197 – 201, doi: 10.1038/ngeo433.en_US
dc.identifier.citedreferenceTurcotte, D. L., and J. P. Morgan ( 1992 ), The Physics of Magma Migration and Mantle Flow Beneath a Mid‐Ocean Ridge, Geophys. Monogr. Ser., vol. 71, 361 pp., AGU, Washington, D. C., doi: 10.1029/GM071.en_US
dc.identifier.citedreferenceWilliams, G. A., and K. K. Turekian ( 2004 ), The glacial‐interglacial variation of seawater osmium isotopes as recorded in Santa Barbara Basin, Earth Planet. Sci. Lett., 228 ( 3–4 ), 379 – 389, doi: 10.1016/j.epsl.2004.10.004.en_US
dc.identifier.citedreferenceWorkman, R. K., and S. R. Hart ( 2005 ), Major and trace element composition of the depleted MORB mantle (DMM), Earth Planet. Sci. Lett., 231 ( 1–2 ), 53 – 72, doi: 10.1016/j.epsl.2004.12.005.en_US
dc.identifier.citedreferenceYang, Y. L., H. Elderfield, T. F. Pedersen, and M. Ivanovich ( 1995 ), Geochemical record of the panama basin during the last glacial maximum carbon event shows that the glacial ocean was not suboxic, Geology, 23 ( 12 ), 1115 – 1118, doi: 10.1130/0091‐7613(1995)023<1115:GROTPB>2.3.CO;2.en_US
dc.identifier.citedreferenceYu, E. F., R. Francois, M. P. Bacon, and A. P. Fleer ( 2001 ), Fluxes of 230 Th and 231 Pa to the deep sea: Implications for the interpretation of excess 230 Th and 231 Pa/ 230 Th profiles in sediments, Earth Planet. Sci. Lett., 191 ( 3–4 ), 219 – 230, doi: 10.1016/S0012‐821X(01)00410‐1.en_US
dc.identifier.citedreferenceAsimow, P. D., M. M. Hirschmann, and E. M. Stolper ( 1997 ), An analysis of variations in isentropic melt productivity, Philos. Trans. R. Soc. London, Ser. A, 355, 255 – 281, doi: 10.1098/rsta.1997.0009.en_US
dc.identifier.citedreferenceAsimow, P. D., M. M. Hirschmann, and E. M. Stolper ( 2001 ), Calculation of peridotite partial melting from thermodynamic models of minerals and melts. IV. Adiabatic decompression and the composition and mean properties of mid‐ocean ridge basalts, J. Petrol., 42 ( 5 ), 963 – 998, doi: 10.1093/petrology/42.5.963.en_US
dc.identifier.citedreferenceAsimow, P. D., J. E. Dixon, and C. H. Langmuir ( 2004 ), A hydrous melting and fractionation model for mid‐ocean ridge basalts: Application to the Mid‐Atlantic Ridge near the Azores, Geochem. Geophys. Geosyst., 5, Q01E16, doi: 10.1029/2003GC000568.en_US
dc.identifier.citedreferenceAuffret, G. A., et al. ( 1996 ), Record of hydrothermal activity in sediments from the Mid‐Atlantic Ridge south of the Azores, C. R. Acad. Sci., 323 ( 7 ), 583 – 590.en_US
dc.identifier.citedreferenceBaker, E. T., and G. R. German ( 2004 ), On the global distribution of hydrothermal vent fluids, in Mid‐Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans, Geophys. Monogr. Ser., vol. 148, edited by C. R. German, J. Lin, and L. M. Parson, pp. 245 – 266, AGU, Washington, D. C., doi: 10.1029/148GM10.en_US
dc.identifier.citedreferenceBaker, E. T., G. J. Massoth, and R. A. Feely ( 1987 ), Cataclysmic hydrothermal venting on the Juan‐De‐Fuca ridge, Nature, 329 ( 6135 ), 149 – 151, doi: 10.1038/329149a0.en_US
dc.identifier.citedreferenceBard, E., B. Hamelin, and R. G. Fairbanks ( 1990 a), U‐Th ages obtained by mass‐spectrometry in corals from Barbados: Sea level during the past 130,000 years, Nature, 346 ( 6283 ), 456 – 458, doi: 10.1038/346456a0.en_US
dc.identifier.citedreferenceBard, E., B. Hamelin, R. G. Fairbanks, and A. Zindler ( 1990 b), Calibration of the 14 C timescale over the past 30,000 years using mass‐spectrometric U‐Th ages from Barbados corals, Nature, 345 ( 6274 ), 405 – 410, doi: 10.1038/345405a0.en_US
dc.identifier.citedreferenceBarrett, T. J., P. N. Taylor, and J. Lugowski ( 1987 ), Metalliferous sediments from DSDP Leg 92: The East Pacific Rise transect, Geochim. Cosmochim. Acta, 51 ( 9 ), 2241 – 2253, doi: 10.1016/0016‐7037(87)90278‐X.en_US
dc.identifier.citedreferenceBatchelor, G. K. ( 1967 ), An Introduction to Fluid Dynamics, Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceBerger, W. H., R. C. Finkel, J. S. Killingley, and V. Marchig ( 1983 ), Glacial‐Holocene transition in deep‐sea sediments: Manganese‐spike in the east‐equatorial pacific, Nature, 303 ( 5914 ), 231 – 233, doi: 10.1038/303231a0.en_US
dc.identifier.citedreferenceBintanja, R., R. S. W. van de Wal, and J. Oerlemans ( 2005 ), Modelled atmospheric temperatures and global sea levels over the past million years, Nature, 437 ( 7055 ), 125 – 128, doi: 10.1038/nature03975.en_US
dc.identifier.citedreferenceBöstrom, K., M. N. Peterson, O. Joensuu, and D. E. Fisher ( 1969 ), Aluminum‐poor ferromanganoan sediments on active oceanic ridges, J. Geophys. Res., 74 ( 12 ), 3261 – 3270, doi: 10.1029/JB074i012p03261.en_US
dc.identifier.citedreferenceBraun, M. G., G. Hirth, and E. M. Parmentier ( 2000 ), The effects of deep damp melting on mantle flow and melt generation beneath mid‐ocean ridges, Earth Planet. Sci. Lett., 176 ( 3–4 ), 339 – 356, doi: 10.1016/S0012‐821X(00)00015‐7.en_US
dc.identifier.citedreferenceBroecker, W., and S. Barker ( 2007 ), A 190‰ drop in atmosphere's Δ 14 C during the “Mystery Interval” (17.5 to 14.5 kyr), Earth Planet. Sci. Lett., 256 ( 1–2 ), 90 – 99, doi: 10.1016/j.epsl.2007.01.015.en_US
dc.identifier.citedreferenceBroecker, W. S., and E. Clark ( 2010 ), Search for a glacial‐age 14 C‐depleted ocean reservoir, Geophys. Res. Lett., 37, L13606, doi: 10.1029/2010GL043969.en_US
dc.identifier.citedreferenceBroecker, W., E. Clark, and S. Barker ( 2008 ), Near constancy of the Pacific Ocean surface to mid‐depth radiocarbon‐age difference over the last 20 kyr, Earth Planet. Sci. Lett., 274 ( 3–4 ), 322 – 326, doi: 10.1016/j.epsl.2008.07.035.en_US
dc.identifier.citedreferenceBryan, S. P., T. M. Marchitto, and S. J. Lehman ( 2010 ), The release of C‐14‐depleted carbon from the deep ocean during the last deglaciation: Evidence from the Arabian Sea, Earth Planet. Sci. Lett., 298 ( 1–2 ), 244 – 254, doi: 10.1016/j.epsl.2010.08.025.en_US
dc.identifier.citedreferenceBurton, K. W., A. Gannoun, and I. J. Parkinson ( 2010 ), Climate driven glacial‐interglacial variations in the osmium isotope composition of seawater recorded by planktic foraminifera, Sci. Lett. Earth Planet, 295, 58 – 68, doi: 10.1016/j.epsl.2010.03.026.en_US
dc.identifier.citedreferenceButterfield, D. A., W. E. Seyfried, and M. D. Lilley ( 2003 ), Composition and evolution of hydrothermal fluids, in Energy and Mass Transfer in Marine Hydrothermal Systems, edited by P. E. Halbach, V. Tunnicliffe, and J. R. Hein, pp. 123 – 162, Dahlem Univ. Press, Berlin.en_US
dc.identifier.citedreferenceCande, S. C., C. A. Raymond, J. Stock, and W. F. Haxby ( 1995 ), Geophysics of the Pitman fracture zone and Pacific‐Antarctic plate motions during the Cenozoic, Science, 270 ( 5238 ), 947 – 953, doi: 10.1126/science.270.5238.947.en_US
dc.identifier.citedreferenceCarbotte, S. M., and K. C. Macdonald ( 1990 ), Causes of variation in fault‐facing direction on the ocean‐floor, Geology, 18 ( 8 ), 749 – 752, doi:10.1130/0091‐7613(1990)018<0749:COVIFF>2.3.CO;2.en_US
dc.identifier.citedreferenceCarbotte, S. M., and K. C. Macdonald ( 1994 ), Comparison of seafloor tectonic fabric at intermediate, fast, and super fast spreading ridges: Influence of spreading rate, plate motions, and ridge segmentation on fault patterns, J. Geophys. Res., 99 ( B7 ), 13,609 – 13,631, doi: 10.1029/93JB02971.en_US
dc.identifier.citedreferenceChester, R. ( 2000 ), Marine Geochemistry, 506 pp., Blackwell Sci, Oxford, U. K.en_US
dc.identifier.citedreferenceClark, P. U., A. S. Dyke, J. D. Shakun, A. E. Carlson, J. Clark, B. Wohlfarth, J. X. Mitrovica, S. W. Hostetler, and A. M. McCabe ( 2009 ), The Last Glacial Maximum, Science, 325 ( 5941 ), 710 – 714, doi: 10.1126/science.1172873.en_US
dc.identifier.citedreferenceCogne, J. P., and E. Humler ( 2006 ), Trends and rhythms in global seafloor generation rate, Geochem. Geophys. Geosyst., 7, Q03011, doi: 10.1029/2005GC001148.en_US
dc.identifier.citedreferenceCronan, D. S. ( 1976 ), Basal metalliferous sediments from the eastern Pacific, Geol. Soc. Am. Bull., 87 ( 6 ), 928 – 934, doi: 10.1130/0016‐7606(1976)87<928:BMSFTE>2.0.CO;2.en_US
dc.identifier.citedreferenceCutler, K. B., R. L. Edwards, F. W. Taylor, H. Cheng, J. Adkins, C. D. Gallup, P. M. Cutler, G. S. Burr, and A. L. Bloom ( 2003 ), Rapid sea‐level fall and deep‐ocean temperature change since the last interglacial period, Earth Planet. Sci. Lett., 206 ( 3–4 ), 253 – 271, doi: 10.1016/S0012‐821X(02)01107‐X.en_US
dc.identifier.citedreferenceDalai, T. K., K. Suzuki, M. Minagawa, and Y. Nozaki ( 2005 ), Variations in seawater osmium isotope composition since the last glacial maximum: A case study from the Japan Sea, Chem. Geol., 220 ( 3–4 ), 303 – 314, doi: 10.1016/j.chemgeo.2005.04.012.en_US
dc.identifier.citedreferenceDeMets, C., R. G. Gordon, D. F. Argus, and S. Stein ( 1994 ), Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Lett., 21 ( 20 ), 2191 – 2194, doi: 10.1029/94GL02118.en_US
dc.identifier.citedreferenceDe Pol‐Holz, R., L. Keigwin, J. Southon, D. Hebbeln, and M. Mohtadi ( 2010 ), No signature of abyssal carbon in intermediate waters off Chile during deglaciation, Nat. Geosci., 3 ( 3 ), 192 – 195, doi: 10.1038/ngeo745.en_US
dc.identifier.citedreferenceDetrick, R. S., P. Buhl, E. Vera, J. Mutter, J. Orcutt, J. Madsen, and T. Brocher ( 1987 ), Multichannel seismic imaging of a crustal magma chamber along the East Pacific Rise, Nature, 326 ( 6108 ), 35 – 41, doi: 10.1038/326035a0.en_US
dc.identifier.citedreferenceDymond, J. ( 1981 ), Geochemistry of Nazca plate surface sediments–An evaluation of hydrothermal, biogenic, detrital, and hydrogenous sources, Mem. Geol. Soc. Am., 154, 133 – 173.en_US
dc.identifier.citedreferenceEdwards, M. H., D. J. Fornari, A. Malinverno, W. B. F. Ryan, and J. Madsen ( 1991 ), The Regional Tectonic Fabric of the East Pacific Rise From 12°50′N to 15°10′N, J. Geophys. Res., 96 ( B5 ), 7995 – 8017, doi: 10.1029/91JB00283.en_US
dc.identifier.citedreferenceEdwards, R. L., J. W. Beck, G. S. Burr, D. J. Donahue, J. M. A. Chappell, A. L. Bloom, E. R. M. Druffel, and F. W. Taylor ( 1993 ), A large drop in atmospheric 14 C/ 12 C and reduced melting in the Younger Dryas, documented with 230 Th ages of corals, Science, 260 ( 5110 ), 962 – 968, doi: 10.1126/science.260.5110.962.en_US
dc.identifier.citedreferenceFairbanks, R. G., R. A. Mortlock, T. C. Chiu, L. Cao, A. Kaplan, T. P. Guilderson, T. W. Fairbanks, A. L. Bloom, P. M. Grootes, and M. J. Nadeau ( 2005 ), Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230 Th/ 234 U/ 238 U and 14 C dates on pristine corals, Quat. Sci. Rev., 24 ( 16–17 ), 1781 – 1796, doi: 10.1016/j.quascirev.2005.04.007.en_US
dc.identifier.citedreferenceForsyth, D. W. ( 1992 ), Geophysical Constraints on Mantle Flow and Melt Generation Beneath Mid‐Ocean Ridges, Geophys. Monogr. Ser., vol. 71, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceForsyth, D. W., et al. ( 1998 ), Imaging the deep seismic structure beneath a mid‐ocean ridge: The MELT experiment, Science, 280 ( 5367 ), 1215 – 1218, doi: 10.1126/science.280.5367.1215.en_US
dc.identifier.citedreferenceFrancois, R., M. Frank, M. M. R. van der Loeff, and M. P. Bacon ( 2004 ), 230 Th normalization: An essential tool for interpreting sedimentary fluxes during the late Quaternary, Paleoceanography, 19, PA1018, doi: 10.1029/2003PA000939.en_US
dc.identifier.citedreferenceFrancois, R., et al. ( 2007 ), Comment on “Do geochemical estimates of sediment focusing pass the sediment test in the equatorial Pacific?” by M. Lyle et al, Paleoceanography, 22, PA1216, doi: 10.1029/2005PA001235.en_US
dc.identifier.citedreferenceFrank, M., J. D. Eckhardt, A. Eisenhauer, P. W. Kubik, B. Dittrichhannen, M. Segl, and A. Mangini ( 1994 ), Beryllium 10, thorium 230, and protactinium 231 in Galapagos microplate sediments: Implications of hydrothermal activity and paleoproductivity changes during the last 100,000 years, Paleoceanography, 9 ( 4 ), 559 – 578, doi: 10.1029/94PA01132.en_US
dc.identifier.citedreferenceFroelich, P. N., G. P. Klinkhammer, M. L. Bender, N. A. Luedtke, G. R. Heath, D. Cullen, P. Dauphin, D. Hammond, B. Hartman, and V. Maynard ( 1979 ), Early oxidation of organic‐matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis, Geochim. Cosmochim. Acta, 43 ( 7 ), 1075 – 1090, doi: 10.1016/0016‐7037(79)90095‐4.en_US
dc.identifier.citedreferenceGerman, C. R., G. P. Klinkhammer, J. M. Edmond, A. Mitra, and H. Elderfield ( 1990 ), Hydrothermal scavenging of rare‐earth elements in the ocean, Nature, 345 ( 6275 ), 516 – 518, doi: 10.1038/345516a0.en_US
dc.identifier.citedreferenceGerman, C. R., A. C. Campbell, and J. M. Edmond ( 1991 a), Hydrothermal scavenging at the Mid‐Atlantic Ridge: Modification of trace‐element dissolved fluxes, Earth Planet. Sci. Lett., 107 ( 1 ), 101 – 114, doi: 10.1016/0012‐821X(91)90047‐L.en_US
dc.identifier.citedreferenceGerman, C. R., A. P. Fleer, M. P. Bacon, and J. M. Edmond ( 1991 b), Hydrothermal scavenging at the Mid‐Atlantic Ridge: Radionuclide distributions, Earth Planet. Sci. Lett., 105 ( 1–3 ), 170 – 181, doi: 10.1016/0012‐821X(91)90128‐5.en_US
dc.identifier.citedreferenceGerman, C. R., N. C. Higgs, J. Thomson, R. Mills, H. Elderfield, J. Blusztajn, A. P. Fleer, and M. P. Bacon ( 1993 ), A geochemical study of metalliferous sediment from the TAG hydrothermal mound, 26°08′N, Mid‐Atlantic Ridge, J. Geophys. Res., 98 ( B6 ), 9683 – 9692, doi: 10.1029/92JB01705.en_US
dc.identifier.citedreferenceGerman, C. R., et al. ( 1997 ), Hydrothermal scavenging on the Juan de Fuca Ridge: 23O Th xs, 10 Be, and REEs in ridge‐flank sediments, Geochim. Cosmochim. Acta, 61 ( 19 ), 4067 – 4078, doi: 10.1016/S0016‐7037(97)00230‐5.en_US
dc.identifier.citedreferenceGerman, C. R., J. Hergt, M. R. Palmer, and J. M. Edmond ( 1999 ), Geochemistry of a hydrothermal sediment core from the OBS vent‐field, 21°N East Pacific Rise, Chem. Geol., 155 ( 1–2 ), 65 – 75, doi: 10.1016/S0009‐2541(98)00141‐7.en_US
dc.identifier.citedreferenceGerman, C. R., S. Colley, M. R. Palmer, A. Khripounoff, and G. P. Klinkhammer ( 2002 ), Hydrothermal plume‐particle fluxes at 13°N on the East Pacific Rise, Deep Sea Res., Part I, 49 ( 11 ), 1921 – 1940, doi: 10.1016/S0967‐0637(02)00086‐9.en_US
dc.identifier.citedreferenceGhiorso, M. S., M. M. Hirschmann, P. W. Reiners, and V. C. Kress ( 2002 ), The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa, Geochem. Geophys. Geosyst., 3 ( 5 ), 1030, doi: 10.1029/2001GC000217.en_US
dc.identifier.citedreferenceHeath, R. S., and J. Dymond ( 1977 ), Genesis and transformation of metalliferous sediments from the East Pacific Rise, Bauer Deep and Central Basin, northwest Nazca Plate, Geol. Soc. Am. Bull., 88, 723 – 733, doi: 10.1130/0016‐7606(1977)88<723:GATOMS>2.0.CO;2.en_US
dc.identifier.citedreferenceHung, S. H., D. W. Forsyth, and D. R. Toomey ( 2000 ), Can a narrow, melt‐rich, low‐velocity zone of mantle upwelling be hidden beneath the East Pacific Rise? Limits from waveform modeling and the MELT Experiment, J. Geophys. Res., 105 ( B4 ), 7945 – 7960, doi: 10.1029/1999JB900316.en_US
dc.identifier.citedreferenceHuybers, P., and C. Langmuir ( 2009 ), Feedback between deglaciation, volcanism, and atmospheric CO2, Earth Planet. Sci. Lett., 286 ( 3–4 ), 479 – 491, doi: 10.1016/j.epsl.2009.07.014.en_US
dc.identifier.citedreferenceJull, M., and D. McKenzie ( 1996 ), The effect of deglaciation on mantle melting beneath Iceland, J. Geophys. Res., 101 ( B10 ), 21,815 – 21,828, doi: 10.1029/96JB01308.en_US
dc.identifier.citedreferenceKadko, D. ( 1980 ), 230 Th, 226 Ra and 222 Rn in abyssal sediments, Earth Planet. Sci. Lett., 49 ( 2 ), 360 – 380, doi: 10.1016/0012‐821X(80)90079‐5.en_US
dc.identifier.citedreferenceKelemen, P. B., G. Hirth, N. Shimizu, M. Spiegelman, and H. J. B. Dick ( 1997 ), A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges, Philos. Trans. R. Soc. London, Ser. A, 355, 283 – 318, doi: 10.1098/rsta.1997.0010.en_US
dc.identifier.citedreferenceKent, G. M., A. J. Harding, and J. A. Orcutt ( 1990 ), Evidence for a smaller magma chamber beneath the east pacific rise at 9°30′ N, Nature, 344 ( 6267 ), 650 – 653, doi: 10.1038/344650a0.en_US
dc.identifier.citedreferenceKienast, S. S., M. Kienast, A. C. Mix, S. E. Calvert, and R. Francois ( 2007 ), 230 Th normalized particle flux and sediment focusing in the Panama Basin region during the last 30,000 years, Paleoceanography, 22, PA2213, doi: 10.1029/2006PA001357.en_US
dc.identifier.citedreferenceLangmuir, C. H., E. M. Klein, and T. Plank ( 1992 ), Petrological systematics of mid‐ocean ridge basalts: Constraints on melt generation beneath ocean ridges, in Mantle Flow and Melt Generation at Mid‐Ocean Ridges, Geophys. Monogr. Ser., vol. 71, edited by J. P. Morgan, D. K. Blackman, and J. M. Sinton, pp. 183 – 280, AGU, Washington, D. C., doi: 10.1029/GM071p0183.en_US
dc.identifier.citedreferenceLisiecki, L. E., and M. E. Raymo ( 2005 ), A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ 18 O records, Paleoceanography, 20, PA1003, doi: 10.1029/2004PA001071.en_US
dc.identifier.citedreferenceLonsdale, P. ( 1994 ), Geomorphology and structural segmentation of the crest of the southern (Pacific‐Antarctic) East Pacific Rise, J. Geophys. Res., 99 ( B3 ), 4683 – 4702, doi: 10.1029/93JB02756.en_US
dc.identifier.citedreferenceLund, D. C., A. C. Mix, and J. Southon ( 2011 ), Increased ventilation age of the deep northeast Pacific Ocean during the last deglaciation, Nat. Geosci., doi: 10.1038/ngeo1272, in press.en_US
dc.identifier.citedreferenceLupton, J. ( 1998 ), Hydrothermal helium plumes in the Pacific Ocean, J. Geophys. Res., 103 ( C8 ), 15,853 – 15,868, doi: 10.1029/98JC00146.en_US
dc.identifier.citedreferenceLupton, J. E., E. T. Baker, and G. J. Massoth ( 1999 ), Helium, heat, and the generation of hydrothermal event plumes at mid‐ocean ridges, Earth Planet. Sci. Lett., 171 ( 3 ), 343 – 350, doi: 10.1016/S0012‐821X(99)00149‐1.en_US
dc.identifier.citedreferenceLyle, M., N. Pisias, A. Paytan, J. I. Martinez, and A. Mix ( 2007 ), Reply to comment by R. Francois et al. on “Do geochemical estimates of sediment focusing pass the sediment test in the equatorial Pacific?”: Further explorations of 230 Th normalization, Paleoceanography, 22, PA1217, doi: 10.1029/2006PA001373.en_US
dc.identifier.citedreferenceMacdonald, K. C. ( 1982 ), Mid‐ocean ridges: Fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone, Annu. Rev. Earth Planet. Sci., 10, 155 – 190, doi: 10.1146/annurev.ea.10.050182.001103.en_US
dc.identifier.citedreferenceMacdonald, K. C., P. J. Fox, R. T. Alexander, R. Pockalny, and P. Gente ( 1996 ), Volcanic growth faults and the origin of Pacific abyssal hills, Nature, 380 ( 6570 ), 125 – 129, doi: 10.1038/380125a0.en_US
dc.identifier.citedreferenceMaclennan, J., M. Jull, D. McKenzie, L. Slater, and K. Gronvold ( 2002 ), The link between volcanism and deglaciation in Iceland, Geochem. Geophys. Geosyst., 3 ( 11 ), 1062, doi: 10.1029/2001GC000282.en_US
dc.identifier.citedreferenceMarchitto, T. M., S. J. Lehman, J. D. Ortiz, J. Fluckiger, and A. van Geen ( 2007 ), Marine radiocarbon evidence for the mechanism of deglacial atmospheric CO 2 rise, Science, 316 ( 5830 ), 1456 – 1459, doi: 10.1126/science.1138679.en_US
dc.identifier.citedreferenceMcKenzie, D., and M. J. Bickle ( 1988 ), The volume and composition of melt generated by extension of the lithosphere, J. Petrol., 29, 625 – 679.en_US
dc.identifier.citedreferenceMurton, B. J., E. T. Baker, C. M. Sands, and C. R. German ( 2006 ), Detection of an unusually large hydrothermal event plume above the slow‐spreading Carlsberg Ridge: NW Indian Ocean, Geophys. Res. Lett., 33, L10608, doi: 10.1029/2006GL026048.en_US
dc.identifier.citedreferenceOxburgh, R. ( 1998 ), Variations in the osmium isotope composition of sea water over the past 200,000 years, Sci. Lett. Earth Planet, 159, 183 – 191.en_US
dc.identifier.citedreferenceOxburgh, R. ( 2001 ), Residence time of osmium in the oceans, Geochem. Geophys. Geosyst., 2 ( 6 ), 1018, doi: 10.1029/2000GC000104.en_US
dc.identifier.citedreferenceOxburgh, R., A. C. Pierson‐Wickmann, L. Reisberg, and S. Hemming ( 2007 ), Climate‐correlated variations in seawater 187 Os/ 188 Os over the past 200,000 yr: Evidence from the Cariaco Basin, Venezuela, Earth Planet. Sci. Lett., 263 ( 3–4 ), 246 – 258, doi: 10.1016/j.epsl.2007.08.033.en_US
dc.identifier.citedreferencePeucker‐Ehrenbrink, B., and G. Ravizza ( 2000 ), The marine osmium isotope record, Terra Nova, 12 ( 5 ), 205 – 219, doi: 10.1046/j.1365‐3121.2000.00295.x.en_US
dc.identifier.citedreferencePineau, F., and M. Javoy ( 1994 ), Strong degassing at ridge crests: The behaviour of dissolved carbon and water in basalt glasses at 14°N, Mid‐Atlantic Ridge, Earth Planet. Sci. Lett., 123 ( 1–3 ), 179 – 198, doi: 10.1016/0012‐821X(94)90266‐6.en_US
dc.identifier.citedreferenceProskurowski, G., M. D. Lilley, and T. A. Brown ( 2004 ), Isotopic evidence of magmatism and seawater bicarbonate removal at the endeavour hydrothermal system, Earth Planet. Sci. Lett., 225 ( 1–2 ), 53 – 61, doi: 10.1016/j.epsl.2004.06.007.en_US
dc.identifier.citedreferenceRichardson, C., and D. McKenzie ( 1994 ), Radioactive disequilibria from 2D models of melt generation by plumes and ridges, Earth Planet. Sci. Lett., 128, 425 – 437, doi: 10.1016/0012‐821X(94)90160‐0.en_US
dc.identifier.citedreferenceRose, K. A., E. L. Sikes, T. P. Guilderson, P. Shane, T. M. Hill, R. Zahn, and H. J. Spero ( 2010 ), Upper‐ocean‐to‐atmosphere radiocarbon offsets imply fast deglacial carbon dioxide release, Nature, 466 ( 7310 ), 1093 – 1097, doi: 10.1038/nature09288.en_US
dc.identifier.citedreferenceRubin, K. H., I. van der Zander, M. C. Smith, and E. C. Bergmanis ( 2005 ), Minimum speed limit for ocean ridge magmatism from 210 Pb– 226 Ra– 230 Th disequilibria, Nature, 437 ( 7058 ), 534 – 538, doi: 10.1038/nature03993.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.