Show simple item record

Application of combined omics platforms to accelerate biomedical discovery in diabesity

dc.contributor.authorKurland, Irwin J.en_US
dc.contributor.authorAccili, Domenicoen_US
dc.contributor.authorBurant, Charlesen_US
dc.contributor.authorFischer, Steven M.en_US
dc.contributor.authorKahn, Barbara B.en_US
dc.contributor.authorNewgard, Christopher B.en_US
dc.contributor.authorRamagiri, Sumaen_US
dc.contributor.authorRonnett, Gabriele V.en_US
dc.contributor.authorRyals, John A.en_US
dc.contributor.authorSanders, Marken_US
dc.contributor.authorShambaugh, Joeen_US
dc.contributor.authorShockcor, Johnen_US
dc.contributor.authorGross, Steven S.en_US
dc.date.accessioned2013-06-18T18:32:06Z
dc.date.available2014-07-01T15:53:16Zen_US
dc.date.issued2013-05en_US
dc.identifier.citationKurland, Irwin J.; Accili, Domenico; Burant, Charles; Fischer, Steven M.; Kahn, Barbara B.; Newgard, Christopher B.; Ramagiri, Suma; Ronnett, Gabriele V.; Ryals, John A.; Sanders, Mark; Shambaugh, Joe; Shockcor, John; Gross, Steven S. (2013). "Application of combined omics platforms to accelerate biomedical discovery in diabesity." Annals of the New York Academy of Sciences 1287(1): 1-16. <http://hdl.handle.net/2027.42/98128>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98128
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherObesityen_US
dc.subject.otherMetabolomicsen_US
dc.subject.otherProteomicsen_US
dc.subject.otherLipidomicsen_US
dc.subject.otherMetabolism, Metabolic Profilingen_US
dc.subject.otherDiabesityen_US
dc.subject.otherOmicsen_US
dc.subject.otherDiabetesen_US
dc.titleApplication of combined omics platforms to accelerate biomedical discovery in diabesityen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23659636en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98128/1/nyas12116.pdf
dc.identifier.doi10.1111/nyas.12116en_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceSalazar C., J.M. Armenta, D.F. Cortes & V. Shulaev. 2012. Combination of an AccQ.Tag‐ultra performance liquid chromatographic method with tandem mass spectrometry for the analysis of amino acids. Methods Mol. Biol. 828: 13 – 28.en_US
dc.identifier.citedreferenceTan M.H. 1999. Diabetes and coronary artery disease. Diabetes Spectr. 12: 80 – 83.en_US
dc.identifier.citedreferenceShah A.A., D.M. Craig, J.K. Sebek, et al. 2012. Metabolic profiles predict adverse events after coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 143: 873 – 878.en_US
dc.identifier.citedreferenceShah S.H., J.R. Bain, M.J. Muehlbauer, et al. 2010. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ. Cardiovasc. Genet. 3: 207 – 214.en_US
dc.identifier.citedreferenceHaeusler R.A., M. Pratt‐Hyatt, C.L. Welch, et al. 2012. Impaired generation of 12‐hydroxylated bile acids links hepatic insulin signaling with dyslipidemia. Cell Metab. 15: 65 – 74.en_US
dc.identifier.citedreferenceRen H., I.J. Orozco, Y. Su, et al. 2012. FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell. 149: 1314 – 1326.en_US
dc.identifier.citedreferenceKim E.K., I. Miller, S. Aja, et al. 2004. C75, a fatty acid synthase inhibitor, reduces food intake via hypothalamic AMP‐activated protein kinase. J.Biol. Chem. 279: 19970 – 19976.en_US
dc.identifier.citedreferenceTu Y., J.N. Thupari, E.K. Kim, et al. 2005. C75 alters central and peripheral gene expression to reduce food intake and increase energy expenditure. Endocrinology. 146: 486 – 493.en_US
dc.identifier.citedreferenceAja S., L.E. Landree, A.M. Kleman, et al. 2008. Pharmacological stimulation of brain carnitine palmitoyl‐transferase‐1 decreases food intake and body weight. Am. J. Physiol. 294: R352 – 361.en_US
dc.identifier.citedreferenceKuhajda F.P., S. Aja, Y. Tu, et al. 2011. Pharmacological glycerol‐3‐phosphate acyltransferase inhibition decreases food intake and adiposity and increases insulin sensitivity in diet‐induced obesity. Am. J. Physiol. 301: R116 – 130.en_US
dc.identifier.citedreferenceKleman A.M., J.Y. Yuan, S. Aja, et al. 2008. Physiological glucose is critical for optimized neuronal viability and AMPK responsiveness in vitro. J. Neurosci. Methods. 167: 292 – 301.en_US
dc.identifier.citedreferencePatti G.J. 2011. Separation strategies for untargeted metabolomics. J. Sep. Sci. 34: 3460 – 3569.en_US
dc.identifier.citedreferenceBamba T., J.W. Lee, A. Matsubara & E. Fukusaki. 2012. Metabolic profiling of lipids by supercritical fluid chromatography/mass spectrometry. J. Chromatogr. 1250: 212 – 219.en_US
dc.identifier.citedreferenceWhite J.A., R.J. Hart & J.C. Fry. 1986. An evaluation of the Waters Pico‐Tag system for the amino‐acid analysis of food materials. J. Automat. Chem. 8: 170 – 177.en_US
dc.identifier.citedreferencevan Vlies N., L. Tian, H. Overmars, et al. 2005. Characterization of carnitine and fatty acid metabolism in the long‐chain acyl‐CoA dehydrogenase‐deficient mouse. Biochem. J. 387: 185 – 193.en_US
dc.identifier.citedreferenceVreken P., A.E.M Van Lint, A.H. Bootsma, et al. 1999. Quantitative plasma acylcarnitine analysis using electrospray tandem mass spectrometry for the diagnosis of organic acidaemias and fatty acid oxidation defects. J. Inher. Metab. Dis. 22: 302 – 306.en_US
dc.identifier.citedreferenceKind T., G. Wohlgemuth, Y. Lee do, et al. 2009. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time‐of‐flight gas chromatography/mass spectrometry. Anal. Chem. 81: 10038 – 10048.en_US
dc.identifier.citedreferenceLu H., W.B. Dunn, H. Shen, et al. 2008. Comparative evaluation of software for deconvolution of metabolomics data based on GC‐TOF‐MS. Trends Anal. Chem. 27: 215 – 227en_US
dc.identifier.citedreferenceTautenhahn R., K. Cho, W. Uritboonthai, et al. 2012. An accelerated workflow for untargeted metabolomics using the METLIN database. Nat. Biotech. 30: 826 – 828.en_US
dc.identifier.citedreferenceTautenhahn R., G.J. Patti, D. Rinehart & G. Siuzdak. 2012. XCMS Online: a web‐based platform to process untargeted metabolomic data. Anal. Chem. 84: 5035 – 5039.en_US
dc.identifier.citedreferenceDehaven C.D., A.M. Evans, H. Dai & K.A. Lawton. Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J. Cheminform. 2: 9.en_US
dc.identifier.citedreferenceGürdeniz G., M. Kristensen, T. Skov & L.O. Dragsted. 2012. The Effect of LC‐MS Data Preprocessing Methods on the Selection of Plasma Biomarkers in Fed vs. Fasted Rats. Metabolites. 2: 77 – 99.en_US
dc.identifier.citedreferenceDunn W.B., D. Broadhurst, P. Begley, et al. 2011. Procedures for large‐scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 6: 1060 – 1083.en_US
dc.identifier.citedreferenceDehaven C.D., A.M. Evans, H. Dai & K.A. Lawton. 2010. Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J. Cheminform. 2: 9.en_US
dc.identifier.citedreferenceSimons B., D. Kauhanen, T. Sylvänne, et al. 2012. Shotgun Lipidomics by Sequential Precursor Ion Fragmentation on a Hybrid Quadrupole Time‐of‐Flight Mass Spectrometer. Metabolites. 2: 195 – 213.en_US
dc.identifier.citedreferenceEvans AM, H. Dai & C.D. DeHaven. 2012. Categorizing Ion ‐Features in Liquid Chromatography/Mass Spectrometry Metobolomics Data. Metabolomics. 2: 110.en_US
dc.identifier.citedreferenceAthanas M., D.A. Peake, M. Dreyer, et al. 2012. Applying Q Exactive Benchtop Orbitrap LC‐MS/MS and SIEVE 2.0 Software for Cutting‐Edge Metabolomics and Lipidomics Research. 2012. Cited March 12, 2013. https://static.thermoscientific.com/images/D20896~.pdfen_US
dc.identifier.citedreferenceHoefkens J., T. Kind, K. Pinkerton & O. Fiehn. 2008. An automated workflow for rapid alignment and identification of lipid biomarkers obtained from chip‐based direct infusion nanoelectrospray tandem mass spectrometry. 2008. Cited March 12, 2013. http://www.genedata.com/fileadmin/docu ments/Landing/Pages/Mass/Spec/Center/2008/Poster/ASMS/UC/Davis.pdfen_US
dc.identifier.citedreferenceEvans A.M., C.D. DeHaven, T. Barrett, et al. 2009. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small‐molecule complement of biological systems. Anal. Chem. 81: 6656 – 6667.en_US
dc.identifier.citedreferenceKind T.F. & O. Fiehn. 2010. Advances in structure elucidation of small molecules using mass spectrometry. Bioanal. Rev. 2: 23 – 60.en_US
dc.identifier.citedreferenceFahy E., D. Cotter, M. Sud & S. Subramaniam. 2011. Lipid classification, structures and tools. Biochim. Biophys. Acta. 1811: 637 – 647.en_US
dc.identifier.citedreferenceMadsen R., T. Lundstedt & J. Trygg. 2010. Chemometrics in metabolomics–a review in human disease diagnosis. Anal Chim. Acta. 659: 23 – 33.en_US
dc.identifier.citedreferenceKumari S., D. Stevens, T. Kind, et al. 2011. Applying in‐silico retention index and mass spectra matching for identification of unknown metabolites in accurate mass GC‐TOF mass spectrometry. Anal. Chem. 83: 5895 – 5902.en_US
dc.identifier.citedreferenceHindorff L.A., P. Sethupathy, H.A. Junkins, et al. 2009. Potential etiologic and functional implications of genome‐wide association loci for human diseases and traits. Proc. Natl. Acad. of Sci. 106: 9362 – 9367.en_US
dc.identifier.citedreferenceCenters for Disease Control. 2011. Number of Americans with diabetes rises to nearly 26 million. More than a third of adults estimated to have prediabetes. January 26, 2011. Cited March 12. 2013. http://www.cdc.gov/media/releases/2011/p0126_diabetes.html.en_US
dc.identifier.citedreferenceKelley, D.E. 2005. Skeletal muscle fat oxidation: timing and flexibility are everything. J. Clin. Invest. 115: 1699 – 1702.en_US
dc.identifier.citedreferenceGalgani, J.E., C. Moro & E. Ravussin. 2008. Metabolic flexibility and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 295: E1009 – 1017.en_US
dc.identifier.citedreferenceFarag, Y.M. & M.R. Gaballa. 2011. Diabesity: an overview of a rising epidemic. Nephrol. Dial. Transplant. 26: 28 – 35.en_US
dc.identifier.citedreferenceKaufman, F.R. 2005. The Obesity‐Diabetes Epidemic That Threatens America—And What We Must Do to Stop It. Random House Digital.en_US
dc.identifier.citedreferenceXu J., L. Gowen, C. Raphalides, K.K. Hoyer, et al. 1006. Decreased hepatic futile cycling compensates for increased glucose disposal in the Pten heterodeficient mouse. Diabetes. 55: 3372 – 3380.en_US
dc.identifier.citedreferenceVaitheesvaran B., F.Y. Chueh, J. Xu, et al. 2010. Advantages of dynamic “closed loop” stable isotope flux phenotyping over static “open loop” clamps in detecting silent genetic and dietary phenotypes. Metabolomics. 6: 180 – 190.en_US
dc.identifier.citedreferenceVaitheesvaran B., L. Yang, K. Hartil, et al. 2012. Peripheral effects of FAAH deficiency on fuel and energy homeostasis: role of dysregulated lysine acetylation. PLoS One. 7: e33717.en_US
dc.identifier.citedreferenceXu J., G. Xiao, C. Trujillo, et al. 2002. Peroxisome proliferator‐activated receptor alpha (PPARalpha) influences substrate utilization for hepatic glucose production. J. Biol. Chem. 277: 50237 – 50244.en_US
dc.identifier.citedreferenceVaitheesvaran B., D. LeRoith, I.J. Kurland. 2010. MKR mice have increased dynamic glucose disposal despite metabolic inflexibility, and hepatic and peripheral insulin insensitivity. Diabetologia. 53: 2224 – 2232.en_US
dc.identifier.citedreferenceXu J., V. Chang, S.B. Joseph, et al. 2004. Peroxisomal proliferator‐activated receptor alpha deficiency diminishes insulin‐responsiveness of gluconeogenic/glycolytic/pentose gene expression and substrate cycle flux. Endocrinology. 145: 1087 – 1095.en_US
dc.identifier.citedreferencePei L., H. Waki, B. Vaitheesvaran, D.C. Wilpitz, et al. 2006. NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nat. Med. 12: 1048 – 1055.en_US
dc.identifier.citedreferenceXu J., W.N. Lee, J. Phan, M.F. Saad, et al. 2006. Lipin deficiency impairs diurnal metabolic fuel switching. Diabetes. 55: 3429 – 3438.en_US
dc.identifier.citedreferenceXu J., W.N. Lee, G. Xiao, et al. 2003. Determination of a glucose‐dependent futile recycling rate constant from an intraperitoneal glucose tolerance test. Anal. Biochem. 315: 238 – 246.en_US
dc.identifier.citedreferenceYang L., B. Vaitheesvaran, K. Hartil, A.J. Robinson, et al. 2011. The fasted/fed mouse metabolic acetylome: N6‐acetylation differences suggest acetylation coordinates organ‐specific fuel switching. J. Proteome Res. 10: 4134 – 4149.en_US
dc.identifier.citedreferenceZhong L., A. D'Urso, D. Toiber, et al. 2010. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell. 140: 280 – 293.en_US
dc.identifier.citedreferenceZong H., C.C. Wang, B. Vaitheesvaran, et al. 2011. Enhanced Energy Expenditure, Glucose Utilization And Insulin Sensitivity In VAMP8 Null Mice. Diabetes. 60: 30 – 38.en_US
dc.identifier.citedreferenceKarnovsky A., T. Weymouth, T. Hull, et al. 2012. Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics. 28: 373 – 380.en_US
dc.identifier.citedreferenceNewgard C.B., J. An, J.R. Bain, et al. 2009. A branched‐chain amino acid‐related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9: 311 – 326.en_US
dc.identifier.citedreferenceHuffman K.M., S.H. Shah, R.D. Stevens, et al. 2009. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care. 32: 1678 – 1683.en_US
dc.identifier.citedreferenceTai E.S., M.L. Tan, R.D. Stevens, et al. 2010. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian‐Indian men. Diabetologia. 53: 757 – 767.en_US
dc.identifier.citedreferenceShah S.H., D.R. Crosslin, C.S. Haynes, et al. 2012. Branched‐chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia. 55: 321 – 330.en_US
dc.identifier.citedreferenceLaferrere B., D. Reilly, S. Arias, et al. 2011. Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci. Transl. Med. 3: 80re2.en_US
dc.identifier.citedreferenceHerman M.A., P. She, O.D. Peroni, et al. 2010. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J. Biol. Chem. 285: 11348 – 11356.en_US
dc.identifier.citedreferenceFerrara C.T., P. Wang, E.C. Neto, et al. 2008. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling. PLoS Genet. 4: e1000034.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.