Show simple item record

Spin-Photon Entanglement and Quantum Optics with Single Quantum Dots.

dc.contributor.authorSchaibley, John R.en_US
dc.date.accessioned2013-09-24T16:01:08Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2013-09-24T16:01:08Z
dc.date.issued2013en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99785
dc.description.abstractInAs quantum dots (QDs) can be used as optically coupled quantum storage devices for quantum information applications. The QD can be charged with a single electron, where the spin state (up or down) provides a long lived quantum bit (qubit). The QD's optically excited states are used to initialize, manipulate, and read out the electron spin state with laser pulses. However, most practical quantum information applications require many interacting qubits, forming a quantum network. Since QDs are based on semiconductor technology, and are compatible with standard nano-fabrication processing, there is promise that they can provide a solid state platform where a scalable quantum information architecture is realizable. We focus on scaling the QD system to multiple qubits using intermediate spin-photon entangled states. In this work, experimental and theoretical techniques are developed to study the QD-light matter interaction at the single photon level. Resonance fluorescence from a single QD is experimentally realized, and the single photon nature of the scattered radiation is verified through intensity correlation experiments. Transient fluorescence measurements on resonantly excited QDs are performed using time correlated single photon counting techniques to measure the excited state lifetime. High speed electro-optic modulators are used to time gate narrow bandwidth lasers, so that a QD can be driven under step-wise excitation, allowing for the direct observation of time-dependent optical Rabi oscillations. From these measurements, we are able to extract a decoherence rate which is consistent with the lifetime limit, indicating that pure dephasing is negligible in this system. These techniques are applied to the QD spin system to demonstrate a spin-photon entangled state, by performing correlation measurements on the spin and photon state in two bases. A lower bound on the entanglement fidelity of 0.59(4) is achieved, which exceeds the classical limit of 0.5 by more than two standard deviations. The entanglement fidelity is limited primarily by the finite timing resolution of available single photon detectors. Taking this into account, we achieve 84% of the apparatus limited fidelity. These spin-entangled photons can be used to mediate entanglement between distant QD spins, providing the basis of an optically coupled QD spin network.en_US
dc.language.isoen_USen_US
dc.subjectQuantum Doten_US
dc.subjectQuantum Information Processingen_US
dc.subjectQuantum Entanglementen_US
dc.subjectQuantum Coherenceen_US
dc.titleSpin-Photon Entanglement and Quantum Optics with Single Quantum Dots.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplinePhysicsen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberSteel, Duncan G.en_US
dc.contributor.committeememberNorris, Theodore B.en_US
dc.contributor.committeememberDeng, Huien_US
dc.contributor.committeememberBerman, Paul R.en_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99785/1/jschaibl_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.