Show simple item record

Verification of Eulerian–Eulerian and Eulerian–Lagrangian simulations for turbulent fluid–particle flows

dc.contributor.authorPatel, Ravi G.
dc.contributor.authorDesjardins, Olivier
dc.contributor.authorKong, Bo
dc.contributor.authorCapecelatro, Jesse
dc.contributor.authorFox, Rodney O.
dc.date.accessioned2017-11-13T16:41:24Z
dc.date.available2019-02-01T19:56:26Zen
dc.date.issued2017-12
dc.identifier.citationPatel, Ravi G.; Desjardins, Olivier; Kong, Bo; Capecelatro, Jesse; Fox, Rodney O. (2017). "Verification of Eulerian–Eulerian and Eulerian–Lagrangian simulations for turbulent fluid–particle flows." AIChE Journal 63(12): 5396-5412.
dc.identifier.issn0001-1541
dc.identifier.issn1547-5905
dc.identifier.urihttps://hdl.handle.net/2027.42/139111
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherEuler‐Lagrange method
dc.subject.otherfluid‐particle flow
dc.subject.othercomputational fluid dynamics (CFD)
dc.subject.otherquadrature‐based moment methods
dc.subject.otherkinetic theory of granular flow
dc.titleVerification of Eulerian–Eulerian and Eulerian–Lagrangian simulations for turbulent fluid–particle flows
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139111/1/aic15949_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139111/2/aic15949.pdf
dc.identifier.doi10.1002/aic.15949
dc.identifier.sourceAIChE Journal
dc.identifier.citedreferenceAnderson TB, Jackson R. Fluid mechanical description of fluidized beds. Equations of motion. Ind Eng Chem Fundamentals. 1967; 6 ( 4 ): 527 – 539.
dc.identifier.citedreferenceVié A, Doisneau F, Massot M. On the anisotropic Gaussian velocity closure for inertial‐particle laden flows. Commun Computat Phys. 2015; 17 ( 01 ): 1 – 46.
dc.identifier.citedreferenceKong B, Fox RO, Feng H, Capecelatro J, Patel R, Desjardins O. Euler‐Euler anistropic Gaussian mesoscale simulation of homogeneous cluster‐induced gas–particle turbulence. AIChE J. 2017; 63 ( 7 ): 2630 – 2643.
dc.identifier.citedreferenceGualtieri P, Picano F, Sardina G, Casciola CM. Exact regularized point particle method for multiphase flows in the two‐way coupling regime. J Fluid Mech. 2015; 773: 520 – 561.
dc.identifier.citedreferenceSubramaniam S. Statistical modeling of sprays using the droplet distribution function. Phys Fluids. 2001; 13 ( 3 ): 624 – 642.
dc.identifier.citedreferenceFox RO. Turbulence in multiphase flows: fundamental modeling aspects. In: Yeoh GH, editor. Handbook of Multiphase Flow Science and Technology. Singapore: Springer Nature. 2017: 1 – 63.
dc.identifier.citedreferenceRani SL, Balachandar S. Preferential concentration of particles in isotropic turbulence: a comparison of the Lagrangian and the equilibrium Eulerian approaches. Powder Technol. 2004; 141 ( 1–2 ): 109 – 118.
dc.identifier.citedreferenceMaxey MR. The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J Fluid Mech. 1987; 174 ( 1 ): 441.
dc.identifier.citedreferenceToschi F, Bodenschatz E. Lagrangian properties of particles in turbulence. Ann Rev Fluid Mech. 2009; 41 ( 1 ): 375 – 404.
dc.identifier.citedreferenceSyamlal M, Rogers W, O’brien TJ. MFIX documentation: theory guide. National Energy Technology Laboratory, US Department of Energy, Technical Note DOE/METC‐95/1013 and NTIS/DE95000031, 1993.
dc.identifier.citedreferenceGidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. New York, USA: Academic Press, 1994.
dc.identifier.citedreferenceGarzó V, Tenneti S, Subramaniam S, Hrenya CM. Enskog kinetic theory for monodisperse gas–solid flows. J Fluid Mech. 2012; 712: 129 – 168.
dc.identifier.citedreferenceJenkins JT, Savage SB. A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J Fluid Mech. 1983; 130: 187 – 202.
dc.identifier.citedreferenceGibilaro LG, Gallucci K, Di Felice R, Pagliai P. On the apparent viscosity of a fluidized bed. Chem Eng Sci. 2007; 62 ( 1 ): 294 – 300.
dc.identifier.citedreferenceMonchaux R, Bourgoin M, Cartellier A. Preferential concentration of heavy particles: a Voronoï analysis. Phys Fluids. 2010; 22: 103304.
dc.identifier.citedreferenceTagawa Y, Mercado JM, Prakash VN, Calzavarini E, Sun C, Lohse D. Three‐dimensional Lagrangian Voronoï analysis for clustering of particles and bubbles in turbulence. J Fluid Mech. 2012; 693: 201 – 215.
dc.identifier.citedreferenceCapecelatro J, Desjardins O, Fox RO. On fluid–particle dynamics in fully developed cluster‐induced turbulence. J Fluid Mech. 2015; 780: 578 – 635.
dc.identifier.citedreferenceDesjardins O, Blanquart G, Balarac G, Pitsch H. High order conservative finite difference scheme for variable density low Mach number turbulent flows. J Computat Phys. 2008; 227 ( 15 ): 7125 – 7159.
dc.identifier.citedreferenceRycroft C. Voro++: a three‐dimensional Voronoi cell library in C++. Lawrence Berkeley National Laboratory, 2009.
dc.identifier.citedreferenceBhatnagar PL, Gross EP, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one‐component systems. Phys Rev. 1954; 94 ( 3 ): 511.
dc.identifier.citedreferenceMarchisio DL, Fox RO. Computational Models for Polydisperse Particulate and Multiphase Systems. Cambridge, UK: Cambridge University Press, 2013.
dc.identifier.citedreferenceCarnahan NF, Starling KE. Equation of state for nonattracting rigid spheres. J Chem Phys. 1969; 51 ( 2 ): 635 – 636.
dc.identifier.citedreferenceWeller HG, Tabor G, Jasak H, Fureby C. A tensorial approach to computational continuum mechanics using object‐oriented techniques. Comput Phys. 1998; 12 ( 6 ): 620 – 631.
dc.identifier.citedreferenceCapecelatro J, Desjardins O, Fox RO. Effect of domain size on fluid–particle statistics in homogeneous, gravity‐driven, cluster‐induced turbulence. J Fluids Eng. 2015; 138 ( 4 ): 041301.
dc.identifier.citedreferenceJackson R. The Dynamics of Fluidized Particles. Cambridge Monographs on Mechanics. Cambridge, UK: Cambridge University Press, 2000.
dc.identifier.citedreferenceTenneti S, Subramaniam S. Particle‐resolved direct numerical simulation for gas–solid flow model development. Ann Rev Fluid Mech. 2014; 46: 199 – 230.
dc.identifier.citedreferenceUhlmann M, Doychev T. Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: the effect of clustering upon the particle motion. J Fluid Mech. 2017; 752: 310 – 348.
dc.identifier.citedreferenceFox RO. On multiphase turbulence models for collisional fluid–particle flows. J Fluid Mech. 2014; 742: 368 – 424.
dc.identifier.citedreferenceIgci Y, Andrews AT, Sundaresan S, Pannala S, O’brien T. Filtered two‐fluid models for fluidized gas‐particle suspensions. AIChE J. 2008; 54 ( 6 ): 1431 – 1448.
dc.identifier.citedreferenceLu L, Konan A, Benyahia S. Influence of grid resolution, parcel size and drag models on bubbling fluidized bed simulation. Chem Eng J. 2017; 326: 627 – 639.
dc.identifier.citedreferenceAgrawal K, Loezos PN, Syamlal M, Sundaresan S. The role of meso‐scale structures in rapid gas–solid flows. J Fluid Mech. 2001; 445: 151 – 185.
dc.identifier.citedreferenceBalachandar S, Eaton JK. Turbulent dispersed multiphase flow. Ann Rev Fluid Mech. 2010; 42: 111 – 133.
dc.identifier.citedreferenceCapecelatro J, Desjardins O, Fox RO. Numerical study of collisional particle dynamics in cluster‐induced turbulence. J Fluid Mech. 2014; 747 ( R2 ):
dc.identifier.citedreferenceSubramaniam S. Lagrangian–Eulerian methods for multiphase flows. Prog Energy Combust Sci. 2013; 39 ( 2 ): 215 – 245.
dc.identifier.citedreferenceBalachandar S. A scaling analysis for point–particle approaches to turbulent multiphase flows. Int J Multiphase Flow. 2009; 35 ( 9 ): 801 – 810.
dc.identifier.citedreferenceGarg R, Narayanan C, Lakehal D, Subramaniam S. Accurate numerical estimation of interphase momentum transfer in Lagrangian–Eulerian simulations of dispersed two‐phase flows. Int J Multiphase Flow. 2007; 33 ( 12 ): 1337 – 1364.
dc.identifier.citedreferenceGarg R, Narayanan C, Subramaniam S. A numerically convergent Lagrangian–Eulerian simulation method for dispersed two‐phase flows. Int J Multiphase Flow. 2009; 35 ( 4 ): 376 – 388.
dc.identifier.citedreferenceCapecelatro J, Desjardins O. An Euler‐Lagrange strategy for simulating particle‐laden flows. J Computat Phys. 2013; 238: 1 – 31.
dc.identifier.citedreferenceIreland PJ, Desjardins O. Improving particle drag predictions in Euler–Lagrange simulations with two‐way coupling. J Computat Phys. 2017; 338: 405 – 430.
dc.identifier.citedreferenceKong B, Fox RO. A solution algorithm for fluid–particle flows across all flow regimes. J Computat Phys. 2017;344: 575 – 594.
dc.identifier.citedreferencePassalacqua A, Fox RO. Simulation of mono‐ and bidisperse gas–particle flow in a riser with a third‐order quadrature‐based moment method. Ind Eng Chem Res. 2012; 52 ( 1 ): 187 – 198.
dc.identifier.citedreferencePassalacqua A, Galvin JE, Vedula P, Hrenya CM, Fox RO. A quadrature‐based kinetic model for dilute non‐isothermal granular flows. Commun Computat Phys. 2011; 10 ( 01 ): 216 – 252.
dc.identifier.citedreferenceYuan C, Fox RO. Conditional quadrature method of moments for kinetic equations. J Computat Phys. 2011; 230 ( 22 ): 8216 – 8246.
dc.identifier.citedreferenceVié A, Chalons C, Fox RO, Laurent F, Massot M. A multi‐Gaussian quadrature method of moments for simulating high Stokes number turbulent two‐phase flows. In: Annual Research Brief. Center for Turbulence Research, Stanford University, 2012.
dc.identifier.citedreferenceChalons C, Fox RO, Massot M. A multi‐Gaussian quadrature method of moments for gas–particle flows in a LES framework. In: Proceedings of the Summer Program. Center for Turbulence Research, Stanford University, 2010: 347 – 358.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.