Show simple item record

Modeling autosomal dominant Alzheimer’s disease with machine learning

dc.contributor.authorLuckett, Patrick H.
dc.contributor.authorMcCullough, Austin
dc.contributor.authorGordon, Brian A.
dc.contributor.authorStrain, Jeremy
dc.contributor.authorFlores, Shaney
dc.contributor.authorDincer, Aylin
dc.contributor.authorMcCarthy, John
dc.contributor.authorKuffner, Todd
dc.contributor.authorStern, Ari
dc.contributor.authorMeeker, Karin L.
dc.contributor.authorBerman, Sarah B.
dc.contributor.authorChhatwal, Jasmeer P.
dc.contributor.authorCruchaga, Carlos
dc.contributor.authorFagan, Anne M.
dc.contributor.authorFarlow, Martin R.
dc.contributor.authorFox, Nick C.
dc.contributor.authorJucker, Mathias
dc.contributor.authorLevin, Johannes
dc.contributor.authorMasters, Colin L.
dc.contributor.authorMori, Hiroshi
dc.contributor.authorNoble, James M.
dc.contributor.authorSalloway, Stephen
dc.contributor.authorSchofield, Peter R.
dc.contributor.authorBrickman, Adam M.
dc.contributor.authorBrooks, William S.
dc.contributor.authorCash, David M.
dc.contributor.authorFulham, Michael J.
dc.contributor.authorGhetti, Bernardino
dc.contributor.authorJack, Clifford R.
dc.contributor.authorVöglein, Jonathan
dc.contributor.authorKlunk, William
dc.contributor.authorKoeppe, Robert
dc.contributor.authorOh, Hwamee
dc.contributor.authorSu, Yi
dc.contributor.authorWeiner, Michael
dc.contributor.authorWang, Qing
dc.contributor.authorSwisher, Laura
dc.contributor.authorMarcus, Dan
dc.contributor.authorKoudelis, Deborah
dc.contributor.authorJoseph‐mathurin, Nelly
dc.contributor.authorCash, Lisa
dc.contributor.authorHornbeck, Russ
dc.contributor.authorXiong, Chengjie
dc.contributor.authorPerrin, Richard J.
dc.contributor.authorKarch, Celeste M.
dc.contributor.authorHassenstab, Jason
dc.contributor.authorMcDade, Eric
dc.contributor.authorMorris, John C.
dc.contributor.authorBenzinger, Tammie L.S.
dc.contributor.authorBateman, Randall J.
dc.contributor.authorAnces, Beau M.
dc.date.accessioned2021-07-01T20:11:02Z
dc.date.available2022-07-01 16:11:01en
dc.date.available2021-07-01T20:11:02Z
dc.date.issued2021-06
dc.identifier.citationLuckett, Patrick H.; McCullough, Austin; Gordon, Brian A.; Strain, Jeremy; Flores, Shaney; Dincer, Aylin; McCarthy, John; Kuffner, Todd; Stern, Ari; Meeker, Karin L.; Berman, Sarah B.; Chhatwal, Jasmeer P.; Cruchaga, Carlos; Fagan, Anne M.; Farlow, Martin R.; Fox, Nick C.; Jucker, Mathias; Levin, Johannes; Masters, Colin L.; Mori, Hiroshi; Noble, James M.; Salloway, Stephen; Schofield, Peter R.; Brickman, Adam M.; Brooks, William S.; Cash, David M.; Fulham, Michael J.; Ghetti, Bernardino; Jack, Clifford R.; Vöglein, Jonathan ; Klunk, William; Koeppe, Robert; Oh, Hwamee; Su, Yi; Weiner, Michael; Wang, Qing; Swisher, Laura; Marcus, Dan; Koudelis, Deborah; Joseph‐mathurin, Nelly ; Cash, Lisa; Hornbeck, Russ; Xiong, Chengjie; Perrin, Richard J.; Karch, Celeste M.; Hassenstab, Jason; McDade, Eric; Morris, John C.; Benzinger, Tammie L.S.; Bateman, Randall J.; Ances, Beau M. (2021). "Modeling autosomal dominant Alzheimer’s disease with machine learning." Alzheimer’s & Dementia 17(6): 1005-1016.
dc.identifier.issn1552-5260
dc.identifier.issn1552-5279
dc.identifier.urihttps://hdl.handle.net/2027.42/168281
dc.description.abstractIntroductionMachine learning models were used to discover novel disease trajectories for autosomal dominant Alzheimer’s disease.MethodsLongitudinal structural magnetic resonance imaging, amyloid positron emission tomography (PET), and fluorodeoxyglucose PET were acquired in 131 mutation carriers and 74 non- carriers from the Dominantly Inherited Alzheimer Network; the groups were matched for age, education, sex, and apolipoprotein ε4 (APOE ε4). A deep neural network was trained to predict disease progression for each modality. Relief algorithms identified the strongest predictors of mutation status.ResultsThe Relief algorithm identified the caudate, cingulate, and precuneus as the strongest predictors among all modalities. The model yielded accurate results for predicting future Pittsburgh compound B (R2 = 0.95), fluorodeoxyglucose (R2 = 0.93), and atrophy (R2 = 0.95) in mutation carriers compared to non- carriers.DiscussionResults suggest a sigmoidal trajectory for amyloid, a biphasic response for metabolism, and a gradual decrease in volume, with disease progression primarily in subcortical, middle frontal, and posterior parietal regions.
dc.publisherMIT Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfluorodeoxyglucose (FDG)
dc.subject.othermachine learning
dc.subject.othermagnetic resonance imaging (MRI)
dc.subject.otherPittsburgh compound B (PiB)
dc.subject.otherautosomal dominant Alzheimer’s disease (ADAD)
dc.titleModeling autosomal dominant Alzheimer’s disease with machine learning
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurology and Neurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168281/1/alz12259.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168281/2/alz12259_am.pdf
dc.identifier.doi10.1002/alz.12259
dc.identifier.sourceAlzheimer’s & Dementia
dc.identifier.citedreferenceRyman DC, Acosta- Baena N, Aisen PS, et al. Symptom onset in autosomal dominant Alzheimer disease: a systematic review and meta- analysis. Neurology. 2014; 83: 253 - 260.
dc.identifier.citedreferenceSchindler SE, Fagan AM. Autosomal dominant Alzheimer disease: a unique resource to study CSF biomarker changes in preclinical AD. Front Neurol. 2015; 6: 142.
dc.identifier.citedreferenceBateman RJ, Aisen PS, De Strooper B, et al. Autosomal- dominant Alzheimer’s disease: a review and proposal for the prevention of Alzheimer’s disease. Alzheimer’s Res Ther. 2011; 3: 1 - 13.
dc.identifier.citedreferenceGoodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge, MA: MIT Press; 2016.
dc.identifier.citedreferenceHornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks. 1991; 4: 251 - 257.
dc.identifier.citedreferenceHagan MT, Demuth HB, Beale MH. Neural Network Design. Bost Massachusetts PWS; 1995.
dc.identifier.citedreferenceHeaton J. Programming neural networks in Java. Java Dev J; 2002.
dc.identifier.citedreferenceKira K, Rendell LA. A practical approach to feature selection. Proc ninth Int Work Mach Learn. 1992: 249 - 256.
dc.identifier.citedreferenceKotz S, Balakrishnan N, Johnson NL, Continuous multivariate distributions, Volume 1: Models and applications: Second ed. John Wiley & Sons, 2005.
dc.identifier.citedreferenceMendoza H, Klein A, Feurer M, Springenberg JT, Hutter F. Towards automatically- tuned neural networks. Work Autom Mach Learn. 2016.
dc.identifier.citedreferenceWen J, Sutre ET, Samper- gonzález J, et al. How serious is data leakage in deep learning studies on Alzheimer’s disease classification?. Organ Hum Brain Mapp. 2019.
dc.identifier.citedreferenceBero AW, Bauer AQ, Stewart FR, et al. Bidirectional relationship between functional connectivity and amyloid- β deposition in mouse brain. J Neurosci. 2012; 32: 4334 - 4340.
dc.identifier.citedreferenceStargardt A, Swaab DF, Bossers K. The storm before the quiet: neuronal hyperactivity and Aβ in the presymptomatic stages of Alzheimer’s disease. Neurobiol Aging. 2015; 36: 1 - 11.
dc.identifier.citedreferenceBusche MA, Konnerth A. Impairments of neural circuit function in Alzheimer’s disease. Philos Trans R Soc B Biol Sci. 2016; 371: 20150429.
dc.identifier.citedreferenceWorld Health Organization. Dementia fact sheet. WHO 2017; 17: 751 - 760.
dc.identifier.citedreferenceSerrano- Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011; 1: 6189.
dc.identifier.citedreferencePalop JJ, Mucke L. Epilepsy and cognitive impairments in alzheimer disease. Arch Neurol. 2009; 66: 435 - 440.
dc.identifier.citedreferenceBusche MA, Konnerth A. Neuronal hyperactivity - A key defect in Alzheimer’s disease?. BioEssays. 2015; 37: 624 - 632.
dc.identifier.citedreferenceBrilliant MJ, Elble RJ, Ghobrial M, Struble RG. The distribution of amyloid β protein deposition in the corpus striatum of patients with Alzheimer’s disease. Neuropathol Appl Neurobiol. 1997; 23: 322 - 325.
dc.identifier.citedreferenceSuenaga T, Hirano A, Llena JF, Yen SH, Dickson DW. Modified Bielschowsky stain and immunohistochemical studies on striatal plaques in Alzheimer’s disease. Acta Neuropathol. 1990; 80: 280 - 286.
dc.identifier.citedreferenceKlunk WE, Price JC, Mathis CA, et al. Amyloid deposition begins in the striatum of presenilin- 1 mutation carriers from two unrelated pedigrees. J Neurosci. 2007; 27 ( 23 ): 6174 - 6184.
dc.identifier.citedreferenceJack CR, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010; 9: 119 - 128.
dc.identifier.citedreferenceSchulz M- A, Yeo BTT, Vogelstein JT, et al. Deep learning for brains? different linear and nonlinear scaling in UK Biobank brain images vs. machine- learning datasets. BioRxiv; 2019.
dc.identifier.citedreferenceRousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med. 1998; 39: 904 - 911.
dc.identifier.citedreferenceSu Y, Blazey TM, Snyder AZ, et al. Partial volume correction in quantitative amyloid imaging. Neuroimage. 2015; 107: 55 - 64.
dc.identifier.citedreferenceJoshi A, Koeppe RA, Fessler JA. Reducing between scanner differences in multi- center PET studies. Neuroimage. 2009; 46: 154 - 159.
dc.identifier.citedreferenceSu Y, D’Angelo GM, Vlassenko AG, et al. Quantitative analysis of PiB- PET with FreeSurfer ROIs. PLoS One. 2013; 8: 73377.
dc.identifier.citedreferenceDesikan RS, Ségonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006; 31 ( 3 ): 968 - 980.
dc.identifier.citedreferenceFischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A. 2000; 97: 11050 - 11055.
dc.identifier.citedreferenceFischl B. FreeSurfer. Neuroimage. 2012; 62: 774 - 781.
dc.identifier.citedreferenceJack CR, Bernstein MA, Borowski BJ, et al. Update on the magnetic resonance imaging core of the Alzheimer’s disease neuroimaging initiative. Alzheimer’s Dement. 2010; 6: 212 - 220.
dc.identifier.citedreferenceMorris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 2012; 41: 1588 - 1592.
dc.identifier.citedreferenceYoussofzadeh V, McGuinness B, Maguire L, Wong- Lin K. Multi- kernel learning with dartel improves combined MRI- PET classification of Alzheimer’s disease in AIBL data: group and individual analyses. Front Hum Neurosci. 2017; 11: 380.
dc.identifier.citedreferenceCollij LE, Heeman F, Kuijer JPA, et al. Application of machine learning to arterial spin labeling in mild cognitive impairment and Alzheimer Disease. Radiology. 2016; 281: 865 - 875.
dc.identifier.citedreferenceKhazaee A, Ebrahimzadeh A, Babajani- Feremi A. Application of advanced machine learning methods on resting- state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease. Brain Imaging Behav. 2016; 10: 799 - 817.
dc.identifier.citedreferenceMoradi E, Pepe A, Gaser C, Huttunen H, Tohka J. Machine learning framework for early MRI- based Alzheimer’s conversion prediction in MCI subjects. Neuroimage. 2015; 104: 398 - 412.
dc.identifier.citedreferenceDing Y, Sohn JH, Kawczynski MG, et al. A deep learning model to predict a diagnosis of Alzheimer disease by using 18F- FDG PET of the brain. Radiology. 2018; 290: 456 - 464.
dc.identifier.citedreferencePassos IC, Mwangi B, Kapczinski F. Big data analytics and machine learning: 2015 and beyond. Lancet Psychiatry. 2016; 3: 13 - 15.
dc.identifier.citedreferenceErickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for Medical Imaging. RadioGraphics. 2017; 37: 505 - 515.
dc.identifier.citedreferenceChoy G, Khalilzadeh O, Michalski M, et al. Current applications and future impact of machine learning in radiology. Radiology. 2018; 288: 318 - 328.
dc.identifier.citedreferenceJohnson KA, Fox NC, Sperling RA, Klunk WE. Brain imaging in Alzheimer disease. Cold Spring Harb Perspect Med. 2012; 2: 6213.
dc.identifier.citedreferenceLowe VJ, Lundt E, Knopman D, et al. Comparison of [18F]Flutemetamol and [11C]Pittsburgh Compound- B in cognitively normal young, cognitively normal elderly, and Alzheimer’s disease dementia individuals. NeuroImage Clin. 2017; 16: 295 - 302.
dc.identifier.citedreferenceYan L, Liu CY, Wong KP, et al. Regional association of pCASL- MRI with FDG- PET and PiB- PET in people at risk for autosomal dominant Alzheimer’s disease. NeuroImage Clin. 2018; 17: 751 - 760.
dc.identifier.citedreferenceOxtoby NP, Young AL, Cash DM, et al. Data- driven models of dominantly- inherited Alzheimer’s disease progression. Brain. 2018; 141: 1529 - 1544.
dc.identifier.citedreferenceGordon BA, Blazey TM, Su Y, et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study. Lancet Neurol. 2018; 17: 241 - 250.
dc.identifier.citedreferenceMcDade E, Wang G, Gordon BA, et al. Longitudinal cognitive and biomarker changes in dominantly inherited Alzheimer disease. Neurology. 2018; 91: 1295 - 1306.
dc.identifier.citedreferenceYau WYW, Tudorascu DL, McDade EM, et al. Longitudinal assessment of neuroimaging and clinical markers in autosomal dominant Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2015; 14: 804 - 813.
dc.identifier.citedreferenceBateman RJ, Xiong C, Benzinger TLS, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012; 367: 795 - 804.
dc.identifier.citedreferenceMarcus C, Mena E, Subramaniam RM. Brain PET in the diagnosis of Alzheimer’s disease. Clin Nucl Med. 2014; 39: 413.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.