Show simple item record

Poised to prosper? A cross‐system comparison of climate change effects on native and non‐native species performance

dc.contributor.authorSorte, Cascade J. B.en_US
dc.contributor.authorIbáñez, Inesen_US
dc.contributor.authorBlumenthal, Dana M.en_US
dc.contributor.authorMolinari, Nicole A.en_US
dc.contributor.authorMiller, Luke P.en_US
dc.contributor.authorGrosholz, Edwin D.en_US
dc.contributor.authorDiez, Jeffrey M.en_US
dc.contributor.authorD'Antonio, Carla M.en_US
dc.contributor.authorOlden, Julian D.en_US
dc.contributor.authorJones, Sierra J.en_US
dc.contributor.authorDukes, Jeffrey S.en_US
dc.contributor.authorSuding, Katharineen_US
dc.date.accessioned2013-02-12T19:01:27Z
dc.date.available2014-04-02T15:08:08Zen_US
dc.date.issued2013-02en_US
dc.identifier.citationSorte, Cascade J. B.; Ibáñez, Ines ; Blumenthal, Dana M.; Molinari, Nicole A.; Miller, Luke P.; Grosholz, Edwin D.; Diez, Jeffrey M.; D'Antonio, Carla M.; Olden, Julian D.; Jones, Sierra J.; Dukes, Jeffrey S.; Suding, Katharine (2013). "Poised to prosper? A crossâ system comparison of climate change effects on native and nonâ native species performance." Ecology Letters 16(2): 261-270. <http://hdl.handle.net/2027.42/96432>en_US
dc.identifier.issn1461-023Xen_US
dc.identifier.issn1461-0248en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96432
dc.description.abstractClimate change and biological invasions are primary threats to global biodiversity that may interact in the future. To date, the hypothesis that climate change will favour non‐native species has been examined exclusively through local comparisons of single or few species. Here, we take a meta‐analytical approach to broadly evaluate whether non‐native species are poised to respond more positively than native species to future climatic conditions. We compiled a database of studies in aquatic and terrestrial ecosystems that reported performance measures of non‐native (157 species) and co‐occurring native species (204 species) under different temperature, CO 2 and precipitation conditions. Our analyses revealed that in terrestrial (primarily plant) systems, native and non‐native species responded similarly to environmental changes. By contrast, in aquatic (primarily animal) systems, increases in temperature and CO 2 largely inhibited native species. There was a general trend towards stronger responses among non‐native species, including enhanced positive responses to more favourable conditions and stronger negative responses to less favourable conditions. As climate change proceeds, aquatic systems may be particularly vulnerable to invasion. Across systems, there could be a higher risk of invasion at sites becoming more climatically hospitable, whereas sites shifting towards harsher conditions may become more resistant to invasions.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherCambridge University Pressen_US
dc.subject.otherResource Utilisationen_US
dc.subject.otherPerformanceen_US
dc.subject.otherClimate Changeen_US
dc.subject.otherCO 2en_US
dc.subject.otherEffect Sizeen_US
dc.subject.otherForecastingen_US
dc.subject.otherGlobal Warmingen_US
dc.subject.otherInvasive Speciesen_US
dc.subject.otherMeta‐Analysisen_US
dc.subject.otherPrecipitationen_US
dc.titlePoised to prosper? A cross‐system comparison of climate change effects on native and non‐native species performanceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23062213en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96432/1/ele12017-sup-0002-AppendixS2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96432/2/ele12017-sup-0005-AppendixS5.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96432/3/ele12017-sup-0004-AppendixS4.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96432/4/ele12017.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96432/5/ele12017-sup-0003-AppendixS3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96432/6/ele12017-sup-0006-AppendixS6.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96432/7/ele12017-sup-0001-AppendixS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96432/8/ele12017-sup-0007-AppendixS7.pdf
dc.identifier.doi10.1111/ele.12017en_US
dc.identifier.sourceEcology Lettersen_US
dc.identifier.citedreferenceSmith, S.D., Huxman, T.E., Zitzer, S.F., Charlet, T.N., Housman, D.C., Coleman, J.S. et al. ( 2000 ). Elevated CO 2 increases productivity and invasive species success in an arid ecosystem. Nature, 408, 79 – 81.en_US
dc.identifier.citedreferencePörtner, H.O. & Knust, R. ( 2007 ). Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science, 315, 95 – 97.en_US
dc.identifier.citedreferencePullin, A.S. & Knight, T.M. ( 2009 ). Doing more good than harm‐ Building an evidence‐base for conservation and environmental management. Biol. Conserv., 142, 931 – 934.en_US
dc.identifier.citedreferencePullin, A.S. & Stewart, G.B. ( 2006 ). Guidelines for systematic review in conservation and environmental management. Conserv. Biol., 20, 1647 – 1656.en_US
dc.identifier.citedreferencePyšek, P., Richardson, D.M., Pergl, J., Jarosík, V., Sixtová, Z. & Weber, E. ( 2008 ). Geographical and taxonomic biases in invasion ecology. Trends Ecol. Evol., 23, 237 – 244.en_US
dc.identifier.citedreferenceR Development Core Team ( 2011 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org/.en_US
dc.identifier.citedreferenceRahel, F.J. & Olden, J.D. ( 2008 ). Assessing the effects of climate change on aquatic invasive species. Conserv. Biol., 22, 521 – 533.en_US
dc.identifier.citedreferenceRasband, W.S. ( 2009 ). ImageJ. U. S. National Institutes of Health, Bethesda. Available at: http://rsb.info.nih.gov/ij/. Accessed 22 April 2011.en_US
dc.identifier.citedreferenceRejmánek, M. & Richardson, D.M. ( 1996 ). What attributes make some plant species more invasive? Ecology, 77, 1655 – 1661.en_US
dc.identifier.citedreferenceRichardson, D.M., Pyŝek, P., Rejmánek, M., Barbour, M.G., Panetta, F.D. & West, C.J. ( 2000 ). Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib., 6, 93 – 107.en_US
dc.identifier.citedreferenceRoot, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C. & Pounds, J.A. ( 2003 ). Fingerprints of global warming on wild animals and plants. Nature, 421, 57 – 60.en_US
dc.identifier.citedreferenceSala, O.E., Chapin, F.S. III, Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R. et al. ( 2000 ). Global biodiversity scenarios for the year 2100. Science, 287, 1770 – 1774.en_US
dc.identifier.citedreferenceSAS Institute. ( 2008 ). SAS Version 9.2. SAS Institute, Cary, NC.en_US
dc.identifier.citedreferenceSeager, R. & Vecchi, G.A. ( 2010 ). Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc. Natl Acad. Sci. USA, 107, 21277 – 21282.en_US
dc.identifier.citedreferenceSomero, G.N. ( 2012 ). The physiology of global change: linking patterns to mechanisms. Ann. Rev. Mar. Sci., 4, 39 – 61.en_US
dc.identifier.citedreferenceSorte, C.J.B., Williams, S.L. & Zerebecki, R.A. ( 2010a ). Ocean warming increases threat of invasive species in a marine fouling community. Ecology, 91, 2198 – 2204.en_US
dc.identifier.citedreferenceSorte, C.J.B., Williams, S.L. & Carlton, J.T. ( 2010b ). Marine range shifts and species introductions: comparative spread rates and community impacts. Glob. Ecol. Biogeogr., 19, 303 – 316.en_US
dc.identifier.citedreferenceSpiegelhalter, D.J., Best, N., Carlin, B.P. & Linde, A.V.D. ( 2000 ). Bayesian measures of model complexity and fit. J. Royal Stat. Soc. B, 64, 583 – 639.en_US
dc.identifier.citedreferenceStachowicz, J.J., Terwin, J.R., Whitlatch, R.B. & Osman, R.W. ( 2002 ). Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions. Proc. Natl Acad. Sci. USA, 99, 15497 – 15500.en_US
dc.identifier.citedreferenceStewart, G. ( 2010 ). Meta‐analysis in applied ecology. Biol. Lett., 6, 78 – 81.en_US
dc.identifier.citedreferenceSturtz, S., Ligges, U. & Gelman, A. ( 2005 ). R2WinBUGS: A Package for Running WinBUGS from R. J. Stat. Softw., 12, 1 – 16.en_US
dc.identifier.citedreferenceSweeting, M.J., Sutton, A.J. & Lambert, P.C. ( 2004 ). What to add to nothing? Use and avoidance of continuity corrections in meta‐analysis of sparse data. Stat. Med., 23, 1351 – 1375.en_US
dc.identifier.citedreferenceTerrestrial Carbon (TerraC) Information System. ( 2011 ). University of Florida, Gainesville. Available at: http://TerraC.ifas.ufl.edu. Last accessed 14 October 2011.en_US
dc.identifier.citedreferenceTheoharides, K.A. & Dukes, J.S. ( 2007 ). Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol., 176, 256 – 273.en_US
dc.identifier.citedreferenceThomas, A., O'Hara, B., Ligges, U. & Sturtz, S. ( 2006 ). Making BUGS open. RNews, 6, 12 – 17. < http://cran.r-project.org/doc/Rnews/ >.en_US
dc.identifier.citedreferenceThuiller, W., Richardson, D.M., Pyšek, P., Midgley, G.F., Hughes, G.O. & Rouget, M. ( 2005 ). Niche‐based modeling as a tool for predicting the risk of alien plant invasions at a global scale. Glob. Change Biol., 11, 2234 – 2250.en_US
dc.identifier.citedreferenceThuiller, W., Richardson, D.M. & Midgley, G. ( 2007 ). Will climate change promote alien plant invasions? In Biological Invasions. (ed. Nentwig, W. ). Springer‐Verlag, Berlin, pp. 197 – 211.en_US
dc.identifier.citedreferenceVilà, M., Corbin, J.D., Dukes, J.S., Pino, J. & Smith, S.D. ( 2007 ). Linking plant invasions to global environmental change. In Terrestrial Ecosystems in a Changing World. (eds Canadell, J., Pataki, D. Pitelka, L. ). Springer, New York, pp. 93 – 102.en_US
dc.identifier.citedreferenceWalther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C. et al. ( 2002 ). Ecological responses to recent climate change. Nature, 416, 389 – 395.en_US
dc.identifier.citedreferenceWalther, G.R., Roques, A., Hulme, P.E., Sykes, M.T., Pyšek, P., Kuhn, I. et al. ( 2009 ). Alien species in a warmer world: risks and opportunities. Trends Ecol. Evol., 24, 686 – 693.en_US
dc.identifier.citedreferenceWebber, B.L. & Scott, J.K. ( 2012 ). Rapid global change: implications for defining natives and aliens. Glob. Ecol. Biogeogr., 21, 305 – 311.en_US
dc.identifier.citedreferenceWilliams, S.L. & Smith, J.E. ( 2007 ). A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Ann. Rev. Ecol. Evol. Syst., 38, 327 – 359.en_US
dc.identifier.citedreferenceWillis, C.G., Ruhfel, B.R., Primack, R.B., Miller‐Rushing, A.J., Losos, J.B. & Davis, C.C. ( 2010 ). Favorable climate change response explains non‐native species' success in Thoreau's woods. PLoS ONE, 5, e8878.en_US
dc.identifier.citedreferenceWitte, S., Buschbaum, C., van Beusekom, J.E.E. & Reise, K. ( 2010 ). Does climatic warming explain why an introduced barnacle finally takes over after a lag of more than 50 years? Biol. Invasions, 12, 3579 – 3589.en_US
dc.identifier.citedreferenceWu, Z., Dijkstra, P., Koch, G.W., Peñuelas, J. & Hungate, B.A. ( 2011 ). Responses of terrestrial ecosystems to temperature and precipitation change: a meta‐analysis of experimental manipulation. Glob. Change Biol., 17, 927 – 942.en_US
dc.identifier.citedreferenceZerebecki, R.A. & Sorte, C.J.B. ( 2011 ). Temperature tolerance and stress proteins as mechanisms of invasive species success. PLoS ONE, 6, e14806.en_US
dc.identifier.citedreferenceAinsworth, E.A. & Long, S.P. ( 2005 ). What have we learned from 15 years of free‐air CO 2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO 2. New Phytol., 165, 351 – 372.en_US
dc.identifier.citedreferenceBelote, R.T., Weltzin, J.F. & Norby, R.J. ( 2004 ). Response of an understory plant community to elevated [CO 2 ] depends on differential responses of dominant invasive species and is mediated by soil water availability. New Phytol., 161, 827 – 835.en_US
dc.identifier.citedreferenceBlumenthal, D. ( 2006 ). Interactions between resource availability and enemy release in plant invasion. Ecol. Lett., 9, 887 – 895.en_US
dc.identifier.citedreferenceBlumenthal, D., Chimner, R.A., Welker, J.M. & Morgan, J.A. ( 2008 ). Increased snow facilitates plant invasion in mixed grass prairie. New Phytol., 179, 440 – 448.en_US
dc.identifier.citedreferenceBradley, B., Wilcove, D. & Oppenheimer, M. ( 2010 ). Climate change increases risk of plant invasion in the Eastern United States. Biol. Invasions, 12, 1855 – 1872.en_US
dc.identifier.citedreferenceBradley, B.A., Blumenthal, D.M., Early, R., Grosholz, E.D., Lawler, J.J., Miller, L.P. et al. ( 2012 ). Global change, global trade, and the next wave of plant invasions. Front. Ecol. Environ., 10, 20 – 28.en_US
dc.identifier.citedreferenceByers, J.E. ( 2002 ). Impact of non‐indigenous species on natives enhanced by anthropogenic alteration of selection regimes. Oikos, 97, 449 – 458.en_US
dc.identifier.citedreferenceClark, J.S. & Gelfand, A.E. ( 2006 ). A future for models and data in ecology. Trends Ecol. Evol., 21, 375 – 380.en_US
dc.identifier.citedreferenceCrooks, J.A. ( 1998 ). Habitat alteration and community‐level effects of an exotic mussel. Musculista senhousia Mar. Ecol. Progr. Ser., 162, 137 – 152.en_US
dc.identifier.citedreferenceDaehler, C.C. ( 2003 ). Performance comparisons of co‐occurring native and alien invasive plants: Implications for conservation and restoration. Annu. Rev. Ecol. Evol. Syst., 34, 183 – 211.en_US
dc.identifier.citedreferenceD'Antonio, C.M. & Vitousek, P.M. ( 1992 ). Biological invasions by exotic grasses, the grass fire cycle, and global change. Annu. Rev. Ecol. Syst., 23, 63 – 87.en_US
dc.identifier.citedreferenceDavidson, A.M., Jennions, M. & Nicotra, A.B. ( 2011 ). Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta‐analysis. Ecol. Lett., 14, 419 – 431.en_US
dc.identifier.citedreferenceDavis, M.A., Grime, J.P. & Thompson, K. ( 2000 ). Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol., 88, 528 – 534.en_US
dc.identifier.citedreferenceDeutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C. et al. ( 2008 ). Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA, 105, 6668 – 6672.en_US
dc.identifier.citedreferenceDiez, J.M., D'Antonio, C.M., Dukes, J.S., Grosholz, E.D., Olden, J.D., Sorte, C.J.B. et al. ( 2012 ). Will extreme climatic events facilitate biological invasions? Front. Ecol. Environ., 10, 249 – 257.en_US
dc.identifier.citedreferenceDukes, J.S. & Mooney, H.A. ( 1999 ). Does global change increase the success of biological invaders?. Trends Ecol. Evol., 14, 135 – 139.en_US
dc.identifier.citedreferenceDukes, J.S., Chiariello, N.R., Loarie, S.R. & Field, C.B. ( 2011 ). Strong response of an invasive plant species ( Centaurea solstitialis L.) to global environmental changes. Ecol. Appl., 21, 1887 – 1894.en_US
dc.identifier.citedreferenceGelman, A. & Hill, J. ( 2007 ). Data analysis using Regression and multilevel/hierarchical models. Cambridge University Press, New York, NY.en_US
dc.identifier.citedreferenceGonzález, A.L., Kominoski, J.S., Danger, M., Ishida, S., Iwai, N. & Rubach, A. ( 2010 ). Can ecological stoichiometry help explain patterns of biological invasions? Oikos, 119, 779 – 790.en_US
dc.identifier.citedreferenceGrotkopp, E., Erskine‐Ogden, J. & Rejmánek, M. ( 2010 ). Assessing potential invasiveness of woody horticultural plant species using seedling growth rate traits. J. Appl. Ecol., 47, 1320 – 1328.en_US
dc.identifier.citedreferenceHarsch, M.A., Hulme, P.E., McGlone, M.S. & Duncan, R.P. ( 2009 ). Are treelines advancing? A global meta‐analysis of treeline response to climate warming. Ecol. Lett., 12, 1040 – 1049.en_US
dc.identifier.citedreferenceHellmann, J.J., Byers, J.E., Bierwagen, B.G. & Dukes, J.S. ( 2008 ). Five potential consequences of climate change for invasive species. Conserv. Biol., 22, 534 – 543.en_US
dc.identifier.citedreferenceHoeppner, S.S. & Dukes, J.S. ( 2012 ). Interactive responses of old‐field plant growth and composition to warming and precipitation. Glob. Change Biol., 18, 1754 – 1768.en_US
dc.identifier.citedreferenceHuang, D., Haack, R.A. & Zhang, R. ( 2011 ). Does global warming increase establishment rates of invasive alien species? A centurial time series analysis. PLoS ONE, 6, e24733.en_US
dc.identifier.citedreferencevan Kleunen, M., Manning, J.C., Pasqualetto, V. & Johnson, S.D. ( 2008 ). Phylogenetically independent associations between autonomous self‐fertilization & plant invasiveness. Am. Nat., 171, 195 – 201.en_US
dc.identifier.citedreferencevan Kleunen, M., Weber, E. & Fischer, M. ( 2010 ). A meta‐analysis of trait differences between invasive and non‐invasive plant species. Ecol. Lett., 13, 235 – 245.en_US
dc.identifier.citedreferenceLockwood, B.L. & Somero, G.N. ( 2011 ). Invasive and native blue mussels (genus Mytilus ) on the California coast: the role of physiology in a biological invasion. J. Exp. Mar. Biol. Ecol., 400, 167 – 174.en_US
dc.identifier.citedreferenceLunn, D., Spiegelhalter, D., Thomas, A. & Best, N. ( 2009 ). The BUGS project: Evolution, critique, and future directions. Stat. Med., 28, 3049 – 3067.en_US
dc.identifier.citedreferenceLuo, Y., Su, B., Currie, W.S., Dukes, J.S., Finzi, A.C., Hartwig, U. et al. ( 2004 ). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience, 54, 731 – 739.en_US
dc.identifier.citedreferenceMila, A.L. & Ngugi, H.K. ( 2011 ). A Bayesian Approach to Meta‐Analysis of Plant Pathology Studies. Phytopathology, 101, 42 – 51.en_US
dc.identifier.citedreferenceOcchipinti‐Ambrogi, A. ( 2007 ). Global change and marine communities: Alien species and climate change. Mar. Pollut. Bull., 55, 342 – 352.en_US
dc.identifier.citedreferenceOrr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A. et al. ( 2005 ). Anthropogenic ocean acidification over the twenty‐first century and its impact on calcifying organisms. Nature, 437, 681 – 686.en_US
dc.identifier.citedreferenceOsenberg, C.W., Sarnelle, O. & Cooper, S.D. ( 1997 ). Effect size in ecological experiments: the application of biological models in meta‐analysis. Am. Nat., 150, 798 – 812.en_US
dc.identifier.citedreferenceOsenberg, C.W., Sarnelle, O., Cooper, S.D. & Holt, R.D. ( 1999 ). Resolving ecological questions through meta‐analysis: Goals, metrics, and models. Ecology, 80, 1105 – 1117.en_US
dc.identifier.citedreferenceParker, I.M., Simberloff, D., Lonsdale, W.M., Goodell, K., Wonham, M., Kareiva, P.M. et al. ( 1999 ). Impact: Toward a framework for understanding the ecological effects of invaders. Biol. Invasions, 1, 3 – 19.en_US
dc.identifier.citedreferenceParmesan, C. ( 2006 ). Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst., 37, 637 – 669.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.