Search Constraints
Filtering by:
Language
English
Remove constraint Language: English
Language
R
Remove constraint Language: R
« Previous |
11 - 15 of 15
|
Next »
Number of results to display per page
View results as:
Search Results
-
- Creator:
- Smith, Joeseph P., Gronewold, Andrew D., Read, Laura, Crooks, James L., School for Environment and Sustainability, University of Michigan, Department of Civil and Environmental Engineering, University of Michigan, and Cooperative Institute for Great Lakes Research
- Description:
- Using the statistical programming package R ( https://cran.r-project.org/), and JAGS (Just Another Gibbs Sampler, http://mcmc-jags.sourceforge.net/), we processed multiple estimates of the Laurentian Great Lakes water balance components -- over-lake precipitation, evaporation, lateral tributary runoff, connecting channel flows, and diversions -- feeding them into prior distributions (using data from 1950 through 1979), and likelihood functions. The Bayesian Network is coded in the BUGS language. Water balance computations assume that monthly change in storage for a given lake is the difference between beginning of month water levels surrounding each month. For example, the change in storage for June 2015 is the difference between the beginning of month water level for July 2015 and that for June 2015., More details on the model can be found in the following summary report for the International Watersheds Initiative of the International Joint Commission, where the model was used to generate a new water balance historical record from 1950 through 2015: https://www.glerl.noaa.gov/pubs/fulltext/2018/20180021.pdf. Large Lake Statistical Water Balance Model (L2SWBM): https://www.glerl.noaa.gov/data/WaterBalanceModel/, and This data set has a shorter timespan to accommodate a prior which uses data not used in the likelihood functions.
- Keyword:
- Water, Balance, Great Lakes, Laurentian, Machine, Learning, Lakes, Bayesian, and Network
- Citation to related publication:
- Smith, J., Gronewald, A. et al. Summary Report: Development of the Large Lake Statistical Water Balance Model for Constructing a New Historical Record of the Great Lakes Water Balance. Submitted to: The International Watersheds Initiative of the International Joint Commission. Accessible at https://www.glerl.noaa.gov/pubs/fulltext/2018/20180021.pdf, Large Lake Statistical Water Balance Model (L2SWBM). https://www.glerl.noaa.gov/data/WaterBalanceModel/, and Gronewold, A.D., Smith, J.P., Read, L. and Crooks, J.L., 2020. Reconciling the water balance of large lake systems. Advances in Water Resources, p.103505.
- Discipline:
- Science and Engineering
-
- Creator:
- Hodgins-Davis, Andrea, Duveau, Fabien, Walker, Elizabeth, and Wittkopp, Patricia J
- Description:
- Understanding how phenotypes evolve requires disentangling the effects of mutation generating new variation from the effects of selection filtering it. Tests for selection frequently assume that mutation introduces phenotypic variation symmetrically around the population mean, yet few studies have tested this assumption by deeply sampling the distributions of mutational effects for particular traits. Here, we examine distributions of mutational effects for gene expression in the budding yeast Saccharomyces cerevisiae by measuring the effects of thousands of point mutations introduced randomly throughout the genome. We find that the distributions of mutational effects differ for the ten genes surveyed and are inconsistent with normality. For example, all ten distributions of mutational effects included more mutations with large effects than expected for normally distributed phenotypes. In addition, some genes also showed asymmetries in their distribution of mutational effects, with new mutations more likely to increase than decrease the gene’s expression or vice versa. Neutral models of regulatory evolution that take these empirically determined distributions into account suggest that neutral processes may explain more expression variation within natural populations than currently appreciated.
- Keyword:
- gene expression, evolution, mutation, mutagenesis, regulatory evolution, YFP, reporter construct, yeast, TDH1, TDH2, TDH3, GPD1, OST1, PFY1, STM1, RNR1, and RNR2
- Citation to related publication:
- Hodgins-Davis, A., Duveau, F., Walker, E. A., & Wittkopp, P. J. (2019). Empirical measures of mutational effects define neutral models of regulatory evolution in Saccharomyces cerevisiae. BioRxiv, 551804. https://doi.org/10.1101/551804
- Discipline:
- Science
-
- Creator:
- Smith, Joeseph P., Gronewold, Andrew D., Read, Laura, Crooks, James L., School for Environment and Sustainability, University of Michigan, Department of Civil and Environmental Engineering, University of Michigan, and Cooperative Institute for Great Lakes Research
- Description:
- Using the statistical programming package R ( https://cran.r-project.org/), and JAGS (Just Another Gibbs Sampler, http://mcmc-jags.sourceforge.net/), we processed multiple estimates of the Laurentian Great Lakes water balance components -- over-lake precipitation, evaporation, lateral tributary runoff, connecting channel flows, and diversions -- feeding them into prior distributions (using data from 1950 through 1979), and likelihood functions. The Bayesian Network is coded in the BUGS language. Water balance computations assume that monthly change in storage for a given lake is the difference between beginning of month water levels surrounding each month. For example, the change in storage for June 2015 is the difference between the beginning of month water level for July 2015 and that for June 2015., More details on the model can be found in the following summary report for the International Watersheds Initiative of the International Joint Commission, where the model was used to generate a new water balance historical record from 1950 through 2015: https://www.glerl.noaa.gov/pubs/fulltext/2018/20180021.pdf. Large Lake Statistical Water Balance Model (L2SWBM): https://www.glerl.noaa.gov/data/WaterBalanceModel/ , and This data set has a shorter timespan to accommodate a prior which uses data not used in the likelihood functions.
- Keyword:
- Water, Balance, Great Lakes, Laurentian, Machine, Learning, Lakes, Bayesian, and Network
- Citation to related publication:
- Smith, J., Gronewald, A. et al. Summary Report: Development of the Large Lake Statistical Water Balance Model for Constructing a New Historical Record of the Great Lakes Water Balance. Submitted to: The International Watersheds Initiative of the International Joint Commission. Accessible at https://www.glerl.noaa.gov/pubs/fulltext/2018/20180021.pdf, Large Lake Statistical Water Balance Model (L2SWBM). https://www.glerl.noaa.gov/data/WaterBalanceModel/, and Gronewold, A.D., Smith, J.P., Read, L. and Crooks, J.L., 2020. Reconciling the water balance of large lake systems. Advances in Water Resources, p.103505.
- Discipline:
- Science and Engineering
-
- Creator:
- Smith, Joeseph P., Gronewold, Andrew D., Read, Laura, Crooks, James L., School for Environment and Sustainability, University of Michigan, Department of Civil and Environmental Engineering, University of Michigan, and Cooperative Institute for Great Lakes Research, University of Michigan
- Description:
- Using the statistical programming package R ( https://cran.r-project.org/), and JAGS (Just Another Gibbs Sampler, http://mcmc-jags.sourceforge.net/), we processed multiple estimates of the Laurentian Great Lakes water balance components -- over-lake precipitation, evaporation, lateral tributary runoff, connecting channel flows, and diversions -- feeding them into prior distributions (using data from 1950 through 1979), and likelihood functions. The Bayesian Network is coded in the BUGS language. Water balance computations assume that monthly change in storage for a given lake is the difference between beginning of month water levels surrounding each month. For example, the change in storage for June 2015 is the difference between the beginning of month water level for July 2015 and that for June 2015., More details on the model can be found in the following summary report for the International Watersheds Initiative of the International Joint Commission, where the model was used to generate a new water balance historical record from 1950 through 2015: https://www.glerl.noaa.gov/pubs/fulltext/2018/20180021.pdf. Large Lake Statistical Water Balance Model (L2SWBM): https://www.glerl.noaa.gov/data/WaterBalanceModel/, and This data set has a shorter timespan to accommodate a prior which uses data not used in the likelihood functions.
- Keyword:
- Water, Balance, Great Lakes, Laurentian, Machine Learning, Machine, Learning, Lakes, Bayesian, and Network
- Citation to related publication:
- Smith, J., Gronewald, A. et al. Summary Report: Development of the Large Lake Statistical Water Balance Model for Constructing a New Historical Record of the Great Lakes Water Balance. Submitted to: The International Watersheds Initiative of the International Joint Commission. Accessible at https://www.glerl.noaa.gov/pubs/fulltext/2018/20180021.pdf, Large Lake Statistical Water Balance Model (L2SWBM). https://www.glerl.noaa.gov/data/WaterBalanceModel/, and Gronewold, A.D., Smith, J.P., Read, L. and Crooks, J.L., 2020. Reconciling the water balance of large lake systems. Advances in Water Resources, p.103505.
- Discipline:
- Science and Engineering
-
- Creator:
- Quarles, Christopher L.
- Description:
- Student capital is the set of skills, traits, and resources that an individual can draw upon to be successful in school. With dropout rates around 50%, community college students often don't have enough student capital to achieve their goals. The R code in this dataset estimates the average student capital of a group of community college students using data on their total credits and academic outcomes. It also contains R code to create figures, as found in the paper "The Shape of Educational Inequality" by Quarles, Budak & Resnick.
- Keyword:
- education, community college, and maximum likelihood estimation
- Citation to related publication:
- Quarles, C. L., Budak, C., Resnick, P. (2020). The shape of educational inequality. Science Advances. 6(29). https://doi.org/10.1126/sciadv.aaz5954
- Discipline:
- Social Sciences