Search Constraints
Filtering by:
Language
English
Remove constraint Language: English
Language
R
Remove constraint Language: R
Discipline
Engineering
Remove constraint Discipline: Engineering
Discipline
Science
Remove constraint Discipline: Science
1 - 6 of 6
Number of results to display per page
View results as:
Search Results
-
Estimates of the water balance of the Laurentian Great Lakes using the Large Lakes Statistical Water Balance Model (L2SWBM)
User Collection- Creator:
- Smith, Joeseph P., Fry, Lauren M., Do, Hong X., and Gronewold, Andrew D.
- Description:
- This collection contains estimates of the water balance of the Laurentian Great Lakes that were produced by the Large Lakes Statistical Water Balance Model (L2SWBM). Each data set has a different configuration and was used as the supplementary for a published peer-reviewed article (see "Citations to related material" section in the metadata of individual data sets). The key variables that were estimated by the L2SWBM are (1) over-lake precipitation, (2) over-lake evaporation, (3) lateral runoff, (4) connecting-channel outflows, (5) diversions, and (6) predictive changes in lake storage. and Contact: Andrew Gronewold Office: 4040 Dana Phone: (734) 764-6286 Email: drewgron@umich.edu
- Keyword:
- Great Lakes water levels, statistical inference, water balance, data assimilation, Great Lakes, Laurentian, Machine learning, Bayesian, and Network
- Citation to related publication:
- Smith, J. P., & Gronewold, A. D. (2017). Development and analysis of a Bayesian water balance model for large lake systems. arXiv preprint arXiv:1710.10161., Gronewold, A. D., Smith, J. P., Read, L., & Crooks, J. L. (2020). Reconciling the water balance of large lake systems. Advances in Water Resources, 103505., and Do, H.X., Smith, J., Fry, L.M., and Gronewold, A.D., Seventy-year long record of monthly water balance estimates for Earth’s largest lake system (under revision)
- Discipline:
- Science and Engineering
5Works -
- Creator:
- Fu, Xun, Zhang, Bohao, Weber, Ceri J., Cooper, Kimberly L., Vasudevan, Ram, and Moore, Talia Y.
- Description:
- Tails used as inertial appendages induce body rotations of animals and robots---a phenomenon that is governed largely by the ratio of the body and tail moments of inertia. However, vertebrate tails have more degrees of freedom (e.g., number of joints, rotational axes) than most current theoretical models and robotic tails. To understand how morphology affects inertial appendage function, we developed an optimization-based approach that finds the maximally effective tail trajectory and measures error from a target trajectory. For tails of equal total length and mass, increasing the number of equal-length joints increased the complexity of maximally effective tail motions. When we optimized the relative lengths of tail bones while keeping the total tail length, mass, and number of joints the same, this optimization-based approach found that the lengths match the pattern found in the tail bones of mammals specialized for inertial maneuvering. In both experiments, adding joints enhanced the performance of the inertial appendage, but with diminishing returns, largely due to the total control effort constraint. This optimization-based simulation can compare the maximum performance of diverse inertial appendages that dynamically vary in moment of inertia in 3D space, predict inertial capabilities from skeletal data, and inform the design of robotic inertial appendages.
- Keyword:
- simulation, inertial maneuvering, caudal vertebrae, trajectory optimization, and reconfigurable appendages
- Citation to related publication:
- Xun Fu, Bohao Zhang, Ceri J. Weber, Kimberly L. Cooper, Ram Vasudevan, Talia Y. Moore. (in review) Jointed tails enhance control of three-dimensional body rotation.
- Discipline:
- Engineering and Science
-
- Creator:
- Moore, Talia Y, Villacis Nunez, C Nathaly, Ray, Andrew P, and Cooper, Kimberly L
- Description:
- Hind limbs can undergo dramatic changes in loading conditions during the transition from quadrupedal to bipedal locomotion. For example, the most early diverging bipedal jerboas (Rodentia: Dipodidae) are some of the smallest mammals in the world, with body masses that range 2-4 grams. The larger jerboa species exhibit developmental and evolutionary fusion of the central three metatarsals into a single cannon bone. We hypothesize that body size reduction and metatarsal fusion are mechanisms to maintain the safety factor of the hind limb bones despite the higher ground reaction forces associated with bipedal locomotion. Using finite element analysis to model collisions between the substrate and the metatarsals, we found that body size reduction was insufficient to reduce bone stress on unfused metatarsals, based on the scaled dynamics of larger jerboas, and that fused bones developed lower stresses than unfused bones when all metatarsals are scaled to the same size and loading conditions. Based on these results, we conclude that fusion reinforces larger jerboa metatarsals against high ground reaction forces. Because smaller jerboas with unfused metatarsals develop higher peak stresses in response to loading conditions scaled from larger jerboas, we hypothesize that smaller jerboas use alternative dynamics of bipedal locomotion that reduces the impact of collisions between the foot and substrate.
- Keyword:
- finite element, functional morphology, bipedal, jerboa, metatarsus, and bone fusion
- Citation to related publication:
- Villacis Nunez, Ray, Cooper, Moore (submitted). Body size reduction and metatarsal fusion were distinct mechanisms to resist bending as jerboas (Dipodidae) transitioned from quadrupedal to bipedal.
- Discipline:
- Science and Engineering
-
- Creator:
- Smith, Joeseph P., Gronewold, Andrew D., Read, Laura, Crooks, James L., School for Environment and Sustainability, University of Michigan, Department of Civil and Environmental Engineering, University of Michigan, and Cooperative Institute for Great Lakes Research
- Description:
- Using the statistical programming package R ( https://cran.r-project.org/), and JAGS (Just Another Gibbs Sampler, http://mcmc-jags.sourceforge.net/), we processed multiple estimates of the Laurentian Great Lakes water balance components -- over-lake precipitation, evaporation, lateral tributary runoff, connecting channel flows, and diversions -- feeding them into prior distributions (using data from 1950 through 1979), and likelihood functions. The Bayesian Network is coded in the BUGS language. Water balance computations assume that monthly change in storage for a given lake is the difference between beginning of month water levels surrounding each month. For example, the change in storage for June 2015 is the difference between the beginning of month water level for July 2015 and that for June 2015., More details on the model can be found in the following summary report for the International Watersheds Initiative of the International Joint Commission, where the model was used to generate a new water balance historical record from 1950 through 2015: https://www.glerl.noaa.gov/pubs/fulltext/2018/20180021.pdf. Large Lake Statistical Water Balance Model (L2SWBM): https://www.glerl.noaa.gov/data/WaterBalanceModel/, and This data set has a shorter timespan to accommodate a prior which uses data not used in the likelihood functions.
- Keyword:
- Water, Balance, Great Lakes, Laurentian, Machine, Learning, Lakes, Bayesian, and Network
- Citation to related publication:
- Smith, J., Gronewald, A. et al. Summary Report: Development of the Large Lake Statistical Water Balance Model for Constructing a New Historical Record of the Great Lakes Water Balance. Submitted to: The International Watersheds Initiative of the International Joint Commission. Accessible at https://www.glerl.noaa.gov/pubs/fulltext/2018/20180021.pdf, Large Lake Statistical Water Balance Model (L2SWBM). https://www.glerl.noaa.gov/data/WaterBalanceModel/, and Gronewold, A.D., Smith, J.P., Read, L. and Crooks, J.L., 2020. Reconciling the water balance of large lake systems. Advances in Water Resources, p.103505.
- Discipline:
- Science and Engineering
-
- Creator:
- Smith, Joeseph P., Gronewold, Andrew D., Read, Laura, Crooks, James L., School for Environment and Sustainability, University of Michigan, Department of Civil and Environmental Engineering, University of Michigan, and Cooperative Institute for Great Lakes Research
- Description:
- Using the statistical programming package R ( https://cran.r-project.org/), and JAGS (Just Another Gibbs Sampler, http://mcmc-jags.sourceforge.net/), we processed multiple estimates of the Laurentian Great Lakes water balance components -- over-lake precipitation, evaporation, lateral tributary runoff, connecting channel flows, and diversions -- feeding them into prior distributions (using data from 1950 through 1979), and likelihood functions. The Bayesian Network is coded in the BUGS language. Water balance computations assume that monthly change in storage for a given lake is the difference between beginning of month water levels surrounding each month. For example, the change in storage for June 2015 is the difference between the beginning of month water level for July 2015 and that for June 2015., More details on the model can be found in the following summary report for the International Watersheds Initiative of the International Joint Commission, where the model was used to generate a new water balance historical record from 1950 through 2015: https://www.glerl.noaa.gov/pubs/fulltext/2018/20180021.pdf. Large Lake Statistical Water Balance Model (L2SWBM): https://www.glerl.noaa.gov/data/WaterBalanceModel/ , and This data set has a shorter timespan to accommodate a prior which uses data not used in the likelihood functions.
- Keyword:
- Water, Balance, Great Lakes, Laurentian, Machine, Learning, Lakes, Bayesian, and Network
- Citation to related publication:
- Smith, J., Gronewald, A. et al. Summary Report: Development of the Large Lake Statistical Water Balance Model for Constructing a New Historical Record of the Great Lakes Water Balance. Submitted to: The International Watersheds Initiative of the International Joint Commission. Accessible at https://www.glerl.noaa.gov/pubs/fulltext/2018/20180021.pdf, Large Lake Statistical Water Balance Model (L2SWBM). https://www.glerl.noaa.gov/data/WaterBalanceModel/, and Gronewold, A.D., Smith, J.P., Read, L. and Crooks, J.L., 2020. Reconciling the water balance of large lake systems. Advances in Water Resources, p.103505.
- Discipline:
- Science and Engineering
-
- Creator:
- Smith, Joeseph P., Gronewold, Andrew D., Read, Laura, Crooks, James L., School for Environment and Sustainability, University of Michigan, Department of Civil and Environmental Engineering, University of Michigan, and Cooperative Institute for Great Lakes Research, University of Michigan
- Description:
- Using the statistical programming package R ( https://cran.r-project.org/), and JAGS (Just Another Gibbs Sampler, http://mcmc-jags.sourceforge.net/), we processed multiple estimates of the Laurentian Great Lakes water balance components -- over-lake precipitation, evaporation, lateral tributary runoff, connecting channel flows, and diversions -- feeding them into prior distributions (using data from 1950 through 1979), and likelihood functions. The Bayesian Network is coded in the BUGS language. Water balance computations assume that monthly change in storage for a given lake is the difference between beginning of month water levels surrounding each month. For example, the change in storage for June 2015 is the difference between the beginning of month water level for July 2015 and that for June 2015., More details on the model can be found in the following summary report for the International Watersheds Initiative of the International Joint Commission, where the model was used to generate a new water balance historical record from 1950 through 2015: https://www.glerl.noaa.gov/pubs/fulltext/2018/20180021.pdf. Large Lake Statistical Water Balance Model (L2SWBM): https://www.glerl.noaa.gov/data/WaterBalanceModel/, and This data set has a shorter timespan to accommodate a prior which uses data not used in the likelihood functions.
- Keyword:
- Water, Balance, Great Lakes, Laurentian, Machine Learning, Machine, Learning, Lakes, Bayesian, and Network
- Citation to related publication:
- Smith, J., Gronewald, A. et al. Summary Report: Development of the Large Lake Statistical Water Balance Model for Constructing a New Historical Record of the Great Lakes Water Balance. Submitted to: The International Watersheds Initiative of the International Joint Commission. Accessible at https://www.glerl.noaa.gov/pubs/fulltext/2018/20180021.pdf, Large Lake Statistical Water Balance Model (L2SWBM). https://www.glerl.noaa.gov/data/WaterBalanceModel/, and Gronewold, A.D., Smith, J.P., Read, L. and Crooks, J.L., 2020. Reconciling the water balance of large lake systems. Advances in Water Resources, p.103505.
- Discipline:
- Science and Engineering