Search Constraints
Filtering by:
Creator
Glotzer, Sharon C.
Remove constraint Creator: Glotzer, Sharon C.
Discipline
Engineering
Remove constraint Discipline: Engineering
1 - 5 of 5
Number of results to display per page
View results as:
Search Results
-
- Creator:
- Dwyer, Tobias, Moore, Timothy C., Anderson, Joshua A. , and Glotzer, Sharon C.
- Description:
- This dataset was generated for our work: "Tunable Assembly of Host–Guest Colloidal Crystals". The data set contains data for 5 different binary systems of star particles and convex guests, and one system of only star particles. All simulation were formed at constant pressure. The data set contains GSD files for each of the simulations used in this work along with the corresponding python code used to produce the simulations. We also include the python code and jupyter notebook to produce the free volume calculations used in this work. and How to use this Data: Simulation Data: We include GSD files that can be uploaded into a visualization or analysis software such as Ovito or Freud for independent analysis. Simulation python scripts (workspaces_for_HPMC_simulations.zip): We include the python scripts used in this work for simulating host guest systems at constant pressure. Free Volume Data (Free_volume_calculations_and_analysis.zip): You can run the jupyter notebook included here to reproduce the free volume analysis for this work. We also include the python scripts for the free volume calculation python scripts that get the data for these free volume calculations.
- Citation to related publication:
- Dwyer, T, Moore, TC, Anderson, JA, & Glotzer, SC. Tunable Assembly of Host–Guest Colloidal Crystals. Soft Matter (Provisional Citation)
- Discipline:
- Engineering
-
- Creator:
- Lee, Shih Kuang, Tsai, Sun Ting, and Glotzer, Sharon C.
- Description:
- The trajectory data and codes were generated for our work "Classification of complex local environments in systems of particle shapes through shape-symmetry encoded data augmentation" (amidst peer review process). The data sets contain trajectory data in GSD file format for 7 test systems, including cubic structures, two-dimensional and three-dimensional patchy particle shape systems, hexagonal bipyramids with two aspect ratios, and truncated shapes with two degrees of truncation. Besides, the corresponding Python code and Jupyter notebook used to perform data augmentation, MLP classifier training, and MLP classifier testing are included.
- Keyword:
- Machine Learning, Colloids Self-Assembly, Crystallization, and Order Parameter
- Citation to related publication:
- https://doi.org/10.48550/arXiv.2312.11822
- Discipline:
- Other, Science, and Engineering
-
- Creator:
- Lee, Sophie Y., Schönhöfer Philipp W.A., and Glotzer, Sharon C.
- Description:
- This dataset was generated for our work: "Complex motion of steerable vesicular robots filled with active colloidal rods". In this project, we used Brownian molecular dynamics simulations to study the rich dynamical behavior of rigid kinked vesicles that contain self-propelling rod-shaped particles. We identified that kinks in the vesicle membrane bias the emergent clustering and alignment of the active agents. Based on the system's geometrical and material properties, we were able to design multiple types of directed motion of the vesicle superstructure. This dataset includes simulation data for two-dimensional systems of self-propelling rod particles confined by teardrop-shaped coarse-grained vesicles. The trajectory of each simulation is saved in a GSD format file with parameter metadata in a JSON file. Due to the large number of replicas of each pair of parameters, simulation data were grouped into 5 different folders. Collective quantitative analysis for simulated trajectories was performed with Jupyter Notebook. and Workspaces_simulations.zip contains all the workspaces of simulations Each folder has subfolders called 'dimer' and 'trimer' depending on the length of the propelling rod particles used in the simulation. (Except for the folder 'number-density_16' which has only 'dimer') In the subfolders, we include the Python scripts used in this work for simulating and trajectory analysis for individual trajectory data. The parameter space of each folder is noted in init.py. Analysis_jupyter_notebooks.zip includes Jupyter notebooks that can reproduce the collective analysis done for this work.
- Discipline:
- Engineering
-
- Creator:
- Rivera-Rivera, Luis Y., Moore, Timothy C., and Glotzer, Sharon C.
- Description:
- The dataset is organized as follows: the data for each of the three target structures is contained within a directory with the structure name (e.g., kagome, pyrocholore and snub-square). Within each structure directory, data obtained from alchemical and self-assembly simulations are separated into alchem and self-assembly directories respectively. An additional suboptimal-self-assembly directory is only present for the snub-square structure and contains the data for the pattern registration analysis discussed in the SI. For a detailed description of each file contained within each directory, please refer to the README file.
- Keyword:
- inverse design, self-assembly, triblock Janus particles, crystallization slot, and digital alchemy
- Citation to related publication:
- Rivera-Rivera, LY, Moore, TC & SC Glotzer. Inverse design of triblock Janus spheres for self-assembly of complex structures in the crystallization slot via digital alchemy. Soft Matter, 2023, 19, 2726-2736 doi: 10.1039/d2sm01593e
- Discipline:
- Engineering
-
- Creator:
- Engel, Michael, Glotzer, Sharon C., Anderson, Joshua A., Antonaglia, James, and Millan, Jaime A.
- Description:
- This dataset was generated for our work "Shape and symmetry determine two-dimensional melting transitions of hard regular polygons". The dataset includes simulation results for 13 different polygons (equilateral triangles through regular tetradecagons and the 4-fold pentille) at a variety of packing fractions near the isotropic fluid to solid phase transition. Each trajectory contains the final 4 frames of each simulation run we conducted at system sizes of over one million particles. For each shape, there is a JSON file that describes the vertices of the polygon and a number of simulation trajectory files in GSD ( https://bitbucket.org/glotzer/gsd) format. The trajectory files contain the positions and orientations of all the polygons at each frame, along with the simulation box size. The trajectory file names identify the packing fraction of that simulation run.
- Citation to related publication:
- Anderson, J.A., Antonaglia, J., Millan, J.A., Engel, M., Glotzer, S.C., 2017. Shape and Symmetry Determine Two-Dimensional Melting Transitions of Hard Regular Polygons. Phys. Rev. X 7, 021001. https://doi.org/10.1103/PhysRevX.7.021001
- Discipline:
- Engineering