Search Constraints
Filtering by:
Language
English
Remove constraint Language: English
Language
R
Remove constraint Language: R
« Previous |
1 - 10 of 13
|
Next »
Number of results to display per page
View results as:
Search Results
-
- Creator:
- Hawes, Jason K
- Description:
- Most of this deposit is composed of a step-by-step explanation of how to replicate the work conducted in Chapters 2 and 5 of my dissertation (available in DeepBlue Documents under the title Urban Agriculture: Good for People, Places, and Planet?). Very little actual data is catalogued here, instead largely relying on links to the secondary datasets online. In fact, this is an intentional choice, since any replication would likely want updated data to produce more real-time results. This deposit is intended to accompany the dissertation and may not be the final version of these two manuscripts or their associated methods. For more up-to-date methods and analysis, please search Google Scholar or your affiliated library for Jason Hawes and some combination of keywords including urban agriculture, scaling-up, tradeoffs, or the names of the cities in question.
- Keyword:
- urban agriculture, tradeoffs, remote sensing, and multi-criteria analysis
- Discipline:
- Social Sciences
-
- Creator:
- Crowell, Hayley L . , Curlis, John David, Weller, Hannah I., and Davis Rabosky, Alison R.
- Description:
- Ultraviolet (UV) wavelengths invisible to humans are primarily studied in the context of reproduction and social signaling. This narrow focus can arise from bias in taxa studied, which are often brightly colored in human-visible wavelengths. Our research describes undocumented UV color patterns across 110 diverse species of Western Hemisphere snakes and tests the hypothesized roles of reproduction versus predator avoidance in the evolution of UV coloration. Phylogenetically-informed tests of life stage, sex, and habitat showed unexpected support for the predator defense hypothesis, with pronounced differences in snake conspicuousness explained by UV coloration. UV reflectance was not predictable from any aspect of visible color pattern, suggesting high potential for transformative discoveries in other “cryptically-colored” lineages across the tree of life.
- Keyword:
- color, ecology, evolution, predators, snakes, and ultraviolet
- Citation to related publication:
- Crowell, H. L., Curlis, J. D., Weller, H. I., & Davis Rabosky, A. R. (2024). Ecological drivers of ultraviolet colour evolution in snakes. Nature Communications, 15(1), 5213. http://doi.org/10.1038/s41467-024-49506-4
- Discipline:
- Science
-
Estimates of the water balance of the Laurentian Great Lakes using the Large Lakes Statistical Water Balance Model (L2SWBM)
User Collection- Creator:
- Smith, Joeseph P., Fry, Lauren M., Do, Hong X., and Gronewold, Andrew D.
- Description:
- This collection contains estimates of the water balance of the Laurentian Great Lakes that were produced by the Large Lakes Statistical Water Balance Model (L2SWBM). Each data set has a different configuration and was used as the supplementary for a published peer-reviewed article (see "Citations to related material" section in the metadata of individual data sets). The key variables that were estimated by the L2SWBM are (1) over-lake precipitation, (2) over-lake evaporation, (3) lateral runoff, (4) connecting-channel outflows, (5) diversions, and (6) predictive changes in lake storage. and Contact: Andrew Gronewold Office: 4040 Dana Phone: (734) 764-6286 Email: drewgron@umich.edu
- Keyword:
- Great Lakes water levels, statistical inference, water balance, data assimilation, Great Lakes, Laurentian, Machine learning, Bayesian, and Network
- Citation to related publication:
- Smith, J. P., & Gronewold, A. D. (2017). Development and analysis of a Bayesian water balance model for large lake systems. arXiv preprint arXiv:1710.10161., Gronewold, A. D., Smith, J. P., Read, L., & Crooks, J. L. (2020). Reconciling the water balance of large lake systems. Advances in Water Resources, 103505., and Do, H.X., Smith, J., Fry, L.M., and Gronewold, A.D., Seventy-year long record of monthly water balance estimates for Earth’s largest lake system (under revision)
- Discipline:
- Science and Engineering
5Works -
- Creator:
- Fu, Xun, Zhang, Bohao, Weber, Ceri J., Cooper, Kimberly L., Vasudevan, Ram, and Moore, Talia Y.
- Description:
- Tails used as inertial appendages induce body rotations of animals and robots---a phenomenon that is governed largely by the ratio of the body and tail moments of inertia. However, vertebrate tails have more degrees of freedom (e.g., number of joints, rotational axes) than most current theoretical models and robotic tails. To understand how morphology affects inertial appendage function, we developed an optimization-based approach that finds the maximally effective tail trajectory and measures error from a target trajectory. For tails of equal total length and mass, increasing the number of equal-length joints increased the complexity of maximally effective tail motions. When we optimized the relative lengths of tail bones while keeping the total tail length, mass, and number of joints the same, this optimization-based approach found that the lengths match the pattern found in the tail bones of mammals specialized for inertial maneuvering. In both experiments, adding joints enhanced the performance of the inertial appendage, but with diminishing returns, largely due to the total control effort constraint. This optimization-based simulation can compare the maximum performance of diverse inertial appendages that dynamically vary in moment of inertia in 3D space, predict inertial capabilities from skeletal data, and inform the design of robotic inertial appendages.
- Keyword:
- simulation, inertial maneuvering, caudal vertebrae, trajectory optimization, and reconfigurable appendages
- Citation to related publication:
- Xun Fu, Bohao Zhang, Ceri J. Weber, Kimberly L. Cooper, Ram Vasudevan, Talia Y. Moore. (in review) Jointed tails enhance control of three-dimensional body rotation.
- Discipline:
- Engineering and Science
-
- Creator:
- Sorensen, Troy R, Espey, Eamon, Kelley, John G. W. , Kessler, James, and Gronewold, Andrew D.
- Description:
- Inland lakes play a critical role in ecosystem stability, and robust validation of lake models is essential for understanding their dynamics. While remote sensing data can assist with lake surface temperature validation, in situ data typically provides more accurate, reliable data not limited to only the lake surface. However, in situ temperature data for many individual lakes, particularly in North America, is difficult for researchers to quickly access in a standardized format. This database offers a well-organized collection of in situ near-surface and subsurface temperatures from 134 sites divided among 29 large North American inland lakes collected from a variety of sources. The database includes multiple subsurface temperatures throughout the depth profile of 84 of these sites, providing comprehensive data for lake model evaluation. All lakes selected for this database are large enough (over approximately 30 km^2 to be represented by large-scale operational weather models, supporting robust lake model validation efforts on the lakes that have the greatest impact on climatology.
- Keyword:
- lake, temperature, in situ, and subsurface
- Citation to related publication:
- Sorensen, T., Espey, E., Kelley, J.G.W. et al. A database of in situ water temperatures for large inland lakes across the coterminous United States. Sci Data 11, 282 (2024). https://doi.org/10.1038/s41597-024-03103-8
- Discipline:
- Science
-
- Creator:
- Do, Hong X., Smith, Joeseph P., Fry, Lauren M., and Gronewold, Andrew D.
- Description:
- This data set contains a new monthly estimate of the water balance of the Laurentian Great Lakes, the largest freshwater system on Earth, from 1950 to 2019. The source codes and inputs to derive the new estimates are also included in this dataset. and ***ADDED 2024-02-27: The component net basins supply data "*NBSC_GLWBData.csv" in "output_ts_posterior.zip" need to be revised for further applications***
- Keyword:
- Laurentian Great Lakes, Bayesian inference, water levels, data assimilation, and water balance
- Citation to related publication:
- Do, H. X., Smith, J. P., Fry, L. M., & Gronewold, A. D. (2020). Seventy-year long record of monthly water balance estimates for Earth’s largest lake system. Scientific Data, 7(1), 276. https://doi.org/10.1038/s41597-020-00613-z, Gronewold, A. D., Smith, J. P., Read, L., & Crooks, J. L. (2020). Reconciling the water balance of large lake systems. Advances in Water Resources, 103505. https://doi.org/10.1016/j.advwatres.2020.103505 , and This version replaces the following deprecated dataset: Do, H.X., Smith, J.P., Fry, L.M., Gronewold, A.D. (2020). Monthly water balance estimates for the Laurentian Great Lakes from 1950 to 2019 [Data set]. University of Michigan - Deep Blue. https://doi.org/10.7302/0rsp-v195
- Discipline:
- Science
-
- Creator:
- Srodawa, Kristy, Cerda, Peter A, Davis Rabosky, Alison R, and Crowe-Riddell, Jenna M
- Description:
- Snake venom research has historically focused on front-fanged species (Viperidae and Elapidae), limiting our knowledge of venom evolution in rear-fanged snakes across their ecologically-diverse phylogeny. Three finger toxins (3FTxs) are a known neurotoxic component in the venoms of some rear-fanged snakes (Colubrinae, Colubridae), but it is unclear how prevalent 3FTxs are both in expression within venom glands and more broadly among colubrine species. Here, we used a transcriptomic approach to characterize the venom expression profiles of four species of colubrine snakes from Neotropics that were dominated by 3FTx expression (in the genera Chironius, Oxybelis, Rhinobothryum, and Spilotes) and reconstructed the gene trees of 3FTxs. Overall, our results highlight the importance of exploring the venoms of understudied species in reconstructing the full evolutionary history of toxins across the tree of life.
- Keyword:
- snake venom, neurotoxin, molecular evolution, gene families, and opisthoglyphous
- Citation to related publication:
- Srodawa, K., Cerda, P.A., Davis Rabosky, A.R., Crowe-Riddell, J.M. Evolution of Three Finger Toxin Genes in Neotropical Colubrine Snakes (Colubridae). Toxins 2023, 15(9), 523; https://doi.org/10.3390/toxins15090523
- Discipline:
- Science
-
- Creator:
- Moore, Talia Y, Villacis Nunez, C Nathaly, Ray, Andrew P, and Cooper, Kimberly L
- Description:
- Hind limbs can undergo dramatic changes in loading conditions during the transition from quadrupedal to bipedal locomotion. For example, the most early diverging bipedal jerboas (Rodentia: Dipodidae) are some of the smallest mammals in the world, with body masses that range 2-4 grams. The larger jerboa species exhibit developmental and evolutionary fusion of the central three metatarsals into a single cannon bone. We hypothesize that body size reduction and metatarsal fusion are mechanisms to maintain the safety factor of the hind limb bones despite the higher ground reaction forces associated with bipedal locomotion. Using finite element analysis to model collisions between the substrate and the metatarsals, we found that body size reduction was insufficient to reduce bone stress on unfused metatarsals, based on the scaled dynamics of larger jerboas, and that fused bones developed lower stresses than unfused bones when all metatarsals are scaled to the same size and loading conditions. Based on these results, we conclude that fusion reinforces larger jerboa metatarsals against high ground reaction forces. Because smaller jerboas with unfused metatarsals develop higher peak stresses in response to loading conditions scaled from larger jerboas, we hypothesize that smaller jerboas use alternative dynamics of bipedal locomotion that reduces the impact of collisions between the foot and substrate.
- Keyword:
- finite element, functional morphology, bipedal, jerboa, metatarsus, and bone fusion
- Citation to related publication:
- Villacis Nunez, Ray, Cooper, Moore (submitted). Body size reduction and metatarsal fusion were distinct mechanisms to resist bending as jerboas (Dipodidae) transitioned from quadrupedal to bipedal.
- Discipline:
- Science and Engineering
-
- Creator:
- Smith, Joeseph P., Gronewold, Andrew D., Read, Laura, Crooks, James L., School for Environment and Sustainability, University of Michigan, Department of Civil and Environmental Engineering, University of Michigan, and Cooperative Institute for Great Lakes Research
- Description:
- Using the statistical programming package R ( https://cran.r-project.org/), and JAGS (Just Another Gibbs Sampler, http://mcmc-jags.sourceforge.net/), we processed multiple estimates of the Laurentian Great Lakes water balance components -- over-lake precipitation, evaporation, lateral tributary runoff, connecting channel flows, and diversions -- feeding them into prior distributions (using data from 1950 through 1979), and likelihood functions. The Bayesian Network is coded in the BUGS language. Water balance computations assume that monthly change in storage for a given lake is the difference between beginning of month water levels surrounding each month. For example, the change in storage for June 2015 is the difference between the beginning of month water level for July 2015 and that for June 2015., More details on the model can be found in the following summary report for the International Watersheds Initiative of the International Joint Commission, where the model was used to generate a new water balance historical record from 1950 through 2015: https://www.glerl.noaa.gov/pubs/fulltext/2018/20180021.pdf. Large Lake Statistical Water Balance Model (L2SWBM): https://www.glerl.noaa.gov/data/WaterBalanceModel/, and This data set has a shorter timespan to accommodate a prior which uses data not used in the likelihood functions.
- Keyword:
- Water, Balance, Great Lakes, Laurentian, Machine, Learning, Lakes, Bayesian, and Network
- Citation to related publication:
- Smith, J., Gronewald, A. et al. Summary Report: Development of the Large Lake Statistical Water Balance Model for Constructing a New Historical Record of the Great Lakes Water Balance. Submitted to: The International Watersheds Initiative of the International Joint Commission. Accessible at https://www.glerl.noaa.gov/pubs/fulltext/2018/20180021.pdf, Large Lake Statistical Water Balance Model (L2SWBM). https://www.glerl.noaa.gov/data/WaterBalanceModel/, and Gronewold, A.D., Smith, J.P., Read, L. and Crooks, J.L., 2020. Reconciling the water balance of large lake systems. Advances in Water Resources, p.103505.
- Discipline:
- Science and Engineering
-
- Creator:
- Hodgins-Davis, Andrea, Duveau, Fabien, Walker, Elizabeth, and Wittkopp, Patricia J
- Description:
- Understanding how phenotypes evolve requires disentangling the effects of mutation generating new variation from the effects of selection filtering it. Tests for selection frequently assume that mutation introduces phenotypic variation symmetrically around the population mean, yet few studies have tested this assumption by deeply sampling the distributions of mutational effects for particular traits. Here, we examine distributions of mutational effects for gene expression in the budding yeast Saccharomyces cerevisiae by measuring the effects of thousands of point mutations introduced randomly throughout the genome. We find that the distributions of mutational effects differ for the ten genes surveyed and are inconsistent with normality. For example, all ten distributions of mutational effects included more mutations with large effects than expected for normally distributed phenotypes. In addition, some genes also showed asymmetries in their distribution of mutational effects, with new mutations more likely to increase than decrease the gene’s expression or vice versa. Neutral models of regulatory evolution that take these empirically determined distributions into account suggest that neutral processes may explain more expression variation within natural populations than currently appreciated.
- Keyword:
- gene expression, evolution, mutation, mutagenesis, regulatory evolution, YFP, reporter construct, yeast, TDH1, TDH2, TDH3, GPD1, OST1, PFY1, STM1, RNR1, and RNR2
- Citation to related publication:
- Hodgins-Davis, A., Duveau, F., Walker, E. A., & Wittkopp, P. J. (2019). Empirical measures of mutational effects define neutral models of regulatory evolution in Saccharomyces cerevisiae. BioRxiv, 551804. https://doi.org/10.1101/551804
- Discipline:
- Science