The data and scripts are meant to show how burster dynamics determine response to a single biphasic stimulus. The files include data which show trends in the propensity of termination for different burster types and the MATLAB scripts used to generate this data. The MATLAB scripts also allow the user to generate their own data sets for alternative bursting paths and stimulus parameter combinations. Furthermore, they allow the user to visually examine the effects of single stimuli in the voltage timeseries and in state space. How the user can access these features of the script is described in the file "ReadMe.pdf."
This data and scripts are meant to test and show that seizure onset dynamics can be modulated using anti-epileptic drugs. A zip file is included that contains all waveform data, MATLAB processing scripts, and metadata. The MATLAB scripts allow for visual review validation and objective feature analysis. The file includes various README files explaining the scripts and their relationships in greater detail.
This data and scripts are meant to test and show seizure differentiation based on bifurcation theory. A zip file is included which contains real and simulated seizure waveforms, Matlab scripts, and metadata. The matlab scripts allow for visual review validation and objective feature analysis. The file “README.txt” provides more detail about each individual file within the zip file. and Data citation: Crisp, D.N., Saggio, M.L., Scott, J., Stacey, W.C., Nakatani, M., Gliske, S.F., Lin, J. (2019). Epidynamics: Navigating the map of seizure dynamics - Code & Data [Data set]. University of Michigan Deep Blue Data Repository. https://doi.org/10.7302/ejhy-5h41
Saggio, M.L., Crisp, D., Scott, J., Karoly, P.J., Kuhlmann, L., Nakatani, M., Murai, T., Dümpelmann, M., Schulze-Bonhage, A., Ikeda, A., Cook, M., Gliske, S.V., Lin, J., Bernard, C., Jirsa, V., Stacey, W., 2020. In pre-print. Epidynamics characterize and navigate the map of seizure dynamics. bioRxiv 2020.02.08.940072. https://doi.org/10.1101/2020.02.08.940072