Show simple item record

Four corners: The largest US methane anomaly viewed from space

dc.contributor.authorKort, Eric A.en_US
dc.contributor.authorFrankenberg, Christianen_US
dc.contributor.authorCostigan, Keeley R.en_US
dc.contributor.authorLindenmaier, Rodicaen_US
dc.contributor.authorDubey, Manvendra K.en_US
dc.contributor.authorWunch, Debraen_US
dc.date.accessioned2014-11-04T16:35:16Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2014-11-04T16:35:16Z
dc.date.issued2014-10-16en_US
dc.identifier.citationKort, Eric A.; Frankenberg, Christian; Costigan, Keeley R.; Lindenmaier, Rodica; Dubey, Manvendra K.; Wunch, Debra (2014). "Four corners: The largest US methane anomaly viewed from space." Geophysical Research Letters 41(19): 6898-6903.en_US
dc.identifier.issn0094-8276en_US
dc.identifier.issn1944-8007en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109278
dc.description.abstractMethane (CH 4 ) is a potent greenhouse gas and ozone precursor. Quantifying methane emissions is critical for projecting and mitigating changes to climate and air quality. Here we present CH 4 observations made from space combined with Earth‐based remote sensing column measurements. Results indicate the largest anomalous CH 4 levels viewable from space over the conterminous U.S. are located at the Four Corners region in the Southwest U.S. Emissions exceeding inventory estimates, totaling 0.59 Tg CH 4 /yr [0.50–0.67; 2 σ ], are necessary to bring high‐resolution simulations and observations into agreement. This underestimated source approaches 10% of the EPA estimate of total U.S. CH 4 emissions from natural gas. The persistence of this CH 4 signal from 2003 onward indicates that the source is likely from established gas, coal, and coalbed methane mining and processing. This work demonstrates that space‐based observations can identify anomalous CH 4 emission source regions and quantify their emissions with the use of a transport model. Key Points Four Corners exhibits largest CH 4 anomaly seen from space Emissions of >0.5 Tg CH 4 /yr have persisted since 2003 Space‐ and ground‐based CH 4 identify missing emissions from fossil fuel extractionen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMethaneen_US
dc.subject.otherTCCONen_US
dc.subject.otherSCIAMACHYen_US
dc.subject.otherFugitive Emissionsen_US
dc.titleFour corners: The largest US methane anomaly viewed from spaceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109278/1/grl52142.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109278/2/fs02.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109278/3/fs06.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109278/4/fs03.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109278/5/readme.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109278/6/fs07.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109278/7/fs04.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109278/8/fs01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109278/9/text01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109278/10/fs05.pdf
dc.identifier.doi10.1002/2014GL061503en_US
dc.identifier.sourceGeophysical Research Lettersen_US
dc.identifier.citedreferenceNisbet, E. G., E. J. Dlugokencky, and P. Bousquet ( 2014 ), Methane on the Rise–Again, Science, 343 ( 6170 ), 493 – 495, doi: 10.1126/science.1247828.en_US
dc.identifier.citedreferenceGrell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder ( 2005 ), Fully coupled “online” chemistry within the WRF model, Atmos. Environ., 39 ( 37 ), 6957 – 6975, doi: 10.1016/j.atmosenv.2005.04.027.en_US
dc.identifier.citedreferenceHowarth, R., R. Santoro, and A. Ingraffea ( 2012 ), Venting and leaking of methane from shale gas development: Response to Cathles et al., Clim. Change, 113, 537 – 549.en_US
dc.identifier.citedreferenceHsu, Y.‐K., T. VanCurren, S. Park, C. Jakober, J. Herner, M. FitzGibbon, D. R. Blake, and D. D. Parrish ( 2010 ), Methane emissions inventory verification in southern California, Atmos. Environ., 44 ( 1 ), 1 – 7, doi: 10.1016/j.atmosenv.2009.10.002.en_US
dc.identifier.citedreferenceKatzenstein, A. S., L. A. Doezema, I. J. Simpson, D. R. Balke, and F. S. Rowland ( 2003 ), Extensive regional atmospheric hydrocarbon pollution in the southwestern United States, Proc. Natl. Acad. Sci. U.S.A., 100 ( 21 ), 11,975 – 11,979, doi: 10.1073/pnas.1635258100.en_US
dc.identifier.citedreferenceKort, E. A., J. Eluszkiewicz, B. B. Stephens, J. B. Miller, C. Gerbig, T. Nehrkorn, B. C. Daube, J. O. Kaplan, S. Houweling, and S. C. Wofsy ( 2008 ), Emissions of CH(4) and N(2)O over the United States and Canada based on a receptor‐oriented modeling framework and COBRA‐NA atmospheric observations, Geophys. Res. Lett., 35, L18808, doi: 10.1029/2008GL034031.en_US
dc.identifier.citedreferenceKort, E. A., et al. ( 2010 ), Atmospheric constraints on 2004 emissions of methane and nitrous oxide in North America from atmospheric measurements and a receptor‐oriented modeling framework, J. Integr. Environ. Sci., 7, 125 – 133, doi: 10.1080/19438151003767483.en_US
dc.identifier.citedreferenceKort, E. A., et al. ( 2012 ), Atmospheric observations of Arctic Ocean methane emissions up to 82 degrees north, Nat. Geosci., 5 ( 5 ), 318 – 321, doi: 10.1038/NGEO1452.en_US
dc.identifier.citedreferenceKrings, T., K. Gerilowski, M. Buchwitz, J. Hartmann, T. Sachs, J. Erzinger, J. P. Burrows, and H. Bovensmann ( 2013 ), Quantification of methane emission rates from coal mine ventilation shafts using airborne remote sensing data, Atmos. Meas. Tech., 6 ( 1 ), 151 – 166, doi: 10.5194/amt‐6‐151‐2013.en_US
dc.identifier.citedreferenceLevi, M. A. ( 2012 ), Comment on “Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study” by Gabrielle Petron et al., J. Geophys. Res., 117, D21203, doi: 10.1029/2012JD017686.en_US
dc.identifier.citedreferenceLindenmaier, R., M. K. Dubey, B. G. Henderson, Z. T. Butterfield, J. R. Herman, T. Rahn, and S.‐H. Lee ( 2014 ), Multiscale observations of CO 2, 13 CO 2, and pollutants at Four Corners for emission verification and attribution, Proc. Natl. Acad. Sci. U.S.A., 111 ( 23 ), 8386 – 8391, doi: 10.1073/pnas.1321883111.en_US
dc.identifier.citedreferenceMiller, S. M., et al. ( 2013 ), Anthropogenic emissions of methane in the United States, Proc. Natl. Acad. Sci. U.S.A., 110 ( 50 ), 20,018 – 20,022, doi: 10.1073/pnas.1314392110.en_US
dc.identifier.citedreferenceMoore, T. A. ( 2012 ), Coalbed methane: A review, Int. J. Coal Geol., 101, 36 – 81, doi: 10.1016/j.coal.2012.05.011.en_US
dc.identifier.citedreferenceHowarth, R. W., R. Santoro, and A. Ingraffea ( 2011 ), Methane and the greenhouse‐gas footprint of natural gas from shale formations, Clim. Change, 106 ( 4 ), 679 – 690, doi: 10.1007/s10584‐011‐0061‐5.en_US
dc.identifier.citedreferenceO'Connor, F. M., et al. ( 2010 ), Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review, Rev. Geophys., 48, RG4005, doi: 10.1029/2010RG000326.en_US
dc.identifier.citedreferencePetron, G., et al. ( 2012 ), Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study, J. Geophys. Res., 117, D04304, doi: 10.1029/2011JD016360.en_US
dc.identifier.citedreferenceRigby, M., et al. ( 2008 ), Renewed growth of atmospheric methane, Geophys. Res. Lett., 35, L22805, doi: 10.1029/2008GL036037.en_US
dc.identifier.citedreferenceRingeval, B., N. de Noblet‐Ducoudré, P. Ciais, P. Bousquet, C. Prigent, F. Papa, and W. B. Rossow ( 2010 ), An attempt to quantify the impact of changes in wetland extent on methane emissions on the seasonal and interannual time scales, Global Biogeochem. Cycles, 24, GB2003, doi: 10.1029/2008GB003354.en_US
dc.identifier.citedreferenceU.S. Environmental Protection Agency ( 2013 ), Inventory of U.S. greenhouse gas emission and sinks: 1990–2011, Tech. Rep. EPA‐430‐R‐13‐001.en_US
dc.identifier.citedreferenceWang, J. S., et al. ( 2004 ), A 3‐D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997, Global Biogeochem. Cycles, 18, GB3011, doi: 10.1029/2003GB002180.en_US
dc.identifier.citedreferenceWennberg, P. O., et al. ( 2012 ), On the sources of methane to the Los Angeles atmosphere, Environ. Sci. Technol., 46 ( 17 ), 9282 – 9289, doi: 10.1021/es301138y.en_US
dc.identifier.citedreferenceWunch, D., P. O. Wennberg, G. C. Toon, G. Keppel‐Aleks, and Y. G. Yavin ( 2009 ), Emissions of greenhouse gases from a North American megacity, Geophys. Res. Lett., 36, L15810, doi: 10.1029/2009GL039825.en_US
dc.identifier.citedreferenceWunch, D., et al. ( 2010 ), Calibration of the total carbon column observing network using aircraft profile data, Atmos. Meas. Tech., 3 ( 5 ), 1351 – 1362, doi: 10.5194/amt‐3‐1351‐2010.en_US
dc.identifier.citedreferenceWunch, D., et al. ( 2011 ), The Total Carbon Column Observing Network, Philos. Trans. R. Soc. Ser. A, 369 ( 1943 ), 2087 – 2112, doi: 10.1098/rsta.2010.0240.en_US
dc.identifier.citedreferenceBergamaschi, P., et al. ( 2013 ), Atmospheric CH 4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements, J. Geophys. Res. Atmos., 118, 7350 – 7369, doi: 10.1002/jgrd.50480.en_US
dc.identifier.citedreferenceBousquet, P., et al. ( 2011 ), Source attribution of the changes in atmospheric methane for 2006‐2008, Atmos. Chem. Phys., 11, 3689 – 3700.en_US
dc.identifier.citedreferenceBrandt, A. R., et al. ( 2014 ), Methane leaks from North American natural gas systems, Science, 343 ( 6172 ), 733 – 735, doi: 10.1126/science.1247045.en_US
dc.identifier.citedreferenceCathles, L. M., III, L. Brown, M. Taam, and A. Hunter ( 2012 ), A commentary on “The greenhouse‐gas footprint of natural gas in shale formations” by RW Howarth, R. Santoro, and Anthony Ingraffea, Clim. Change, 113 ( 2 ), 525 – 535, doi: 10.1007/s10584‐011‐0333‐0.en_US
dc.identifier.citedreferenceDlugokencky, E. J., et al. ( 1994 ), A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992, Geophys. Res. Lett., 21, 45 – 48, doi: 10.1029/93GL03070.en_US
dc.identifier.citedreferenceDlugokencky, E. J., et al. ( 2009 ), Observational constraints on recent increases in the atmospheric CH 4 burden, Geophys. Res. Lett., 36, L18803, doi: 10.1029/2009GL039780.en_US
dc.identifier.citedreferenceEuropean Commission, Joint Research Centre/Netherlands Environmental Assessment Agency ( 2010 ), Emission database for global atmospheric research (EDGAR), release version 4.2. [Available at http://edgar.jrc.ec.europa.eu.]en_US
dc.identifier.citedreferenceFrankenberg, C., I. Aben, P. Bergamaschi, E. J. Dlugokencky, R. van Hees, S. Houweling, P. van der Meer, R. Snel, and P. Tol ( 2011 ), Global column‐averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: Trends and variability, J. Geophys. Res., 116, D04302, doi: 10.1029/2010JD014849.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.