Show simple item record

Contribution from different current systems to S Y M and A S Y midlatitude indices

dc.contributor.authorDubyagin, S.en_US
dc.contributor.authorGanushkina, N.en_US
dc.contributor.authorKubyshkina, M.en_US
dc.contributor.authorLiemohn, M.en_US
dc.date.accessioned2014-11-04T16:35:53Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-11-04T16:35:53Z
dc.date.issued2014-09en_US
dc.identifier.citationDubyagin, S.; Ganushkina, N.; Kubyshkina, M.; Liemohn, M. (2014). "Contribution from different current systems to S Y M and A S Y midlatitude indices." Journal of Geophysical Research: Space Physics 119(9): 7243-7263.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109349
dc.description.abstractUsing empirical magnetospheric models, we study the relative contribution from different current systems to the SYM and ASY midlatitude indices. It was found that the models can reproduce ground‐based midlatitude indices with correlation coefficients between the model and real indices being ∼0.8–0.9 for SYM ‐ H and ∼0.6–0.8 and ∼0.5–0.7 for ASY ‐ H and ASY ‐ D , respectively. The good agreement between the indices computed using magnetospheric models and real ones indicates that purely ionospheric current systems, on average, give modest contribution to these indices. The superposed epoch analysis of the indices computed using the models shows that, nominally, the cross‐tail current gives the dominant contribution to SYM ‐ H index during the main phase. However, it should be remembered that the model region 2, partial ring current, and cross‐tail current systems are not spatially demarcated (the systems are overlapped in the vicinity of geostationary orbit). For this reason, this result should be taken with a precaution. The relative contribution from symmetric ring current to SYM ‐ H starts to increase a bit prior or just after SYM ‐ H minimum and attains its maximum during recovery phase. The ASY ‐ H and ASY ‐ D indices are controlled by interplay between three current systems which close via the ionosphere. The region 1 FAC gives the largest contribution to ASY ‐ H and ASY ‐ D indices during the main phase, though, region 2 FAC and partial ring current contributions are also prominent. In addition, we discuss the application of these results to resolving the long‐debated inconsistencies of the substorm‐controlled geomagnetic storm scenario. Key Points Ionospheric currents can give only modest contribution to SYM ‐ H and ASY ‐ H indices Region 1 FAC is the main contributor to ASY ‐ H index ASY ‐ H is controlled by interplay between regions 1 and 2 FACs and partial ring currenten_US
dc.publisherPergamonen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMagnetospheric Indicesen_US
dc.subject.otherField‐Aligned Currentsen_US
dc.subject.otherPartial Ring Currentsen_US
dc.subject.otherGeomagnetic Stormsen_US
dc.titleContribution from different current systems to S Y M and A S Y midlatitude indicesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109349/1/fs02.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109349/2/fs06.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109349/3/fs03.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109349/4/fs07.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109349/5/jgra51282.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109349/6/Auxiliary_material.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109349/7/fs04.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109349/8/fs01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109349/9/fs08.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109349/10/fs05.pdf
dc.identifier.doi10.1002/2014JA020122en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceRussell, C. T., R. L. McPherron, and R. K. Burton ( 1974 ), On the cause of geomagnetic storms, J. Geophys. Res., 79 ( 7 ), 1105 – 1109, doi: 10.1029/JA079i007p01105.en_US
dc.identifier.citedreferenceLiemohn, M. W., D. L. De Zeeuw, R. Ilie, and N. Y. Ganushkina ( 2011 ), Deciphering magnetospheric cross‐field currents, Geophys. Res. Lett., 38, L20106, doi: 10.1029/2011GL049611.en_US
dc.identifier.citedreferenceMaltsev, Y. P. ( 2004 ), Points of controversy in the study of magnetic storms, Space Sci. Rev., 110, 227 – 277, doi: 10.1023/B:SPAC.0000023410.77752.30.en_US
dc.identifier.citedreferenceMunsami, V. ( 2000 ), Determination of the effects of substorms on the storm‐time ring current using neural networks, J. Geophys. Res., 105 ( A12 ), 27,833 – 27,840, doi: 10.1029/2000JA000041.en_US
dc.identifier.citedreferenceNewell, P. T., T. Sotirelis, K. Liou, C. ‐I. Meng, and F. J. Rich ( 2007 ), A nearly universal solar wind‐magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res., 112, A01206, doi: 10.1029/2006JA012015.en_US
dc.identifier.citedreferenceOhtani, S., M. Nosé, G. Rostoker, H. Singer, A. T. Y. Lui, and M. Nakamura ( 2001 ), Storm‐substorm relationship: Contribution of the tail current to Dst, J. Geophys. Res., 106 ( A10 ), 21,199 – 21,209, doi: 10.1029/2000JA000400.en_US
dc.identifier.citedreferenceSckopke, N. ( 1966 ), A general relation between the energy of trapped particles and the disturbance field near the Earth, J. Geophys. Res., 71 ( 13 ), 3125 – 3130, doi: 10.1029/JZ071i013p03125.en_US
dc.identifier.citedreferenceShi, Y., E. Zesta, L. R. Lyons, A. Boudouridis, K. Yumoto, and K. Kitamura ( 2005 ), Effect of solar wind pressure enhancements on storm time ring current asymmetry, J. Geophys. Res., 110, A10205, doi: 10.1029/2005JA011019.en_US
dc.identifier.citedreferenceShi, Y., E. Zesta, L. R. Lyons, K. Yumoto, and K. Kitamura ( 2006 ), Statistical study of effect of solar wind dynamic pressure enhancements on dawn‐to‐dusk ring current asymmetry, J. Geophys. Res., 111, A10216, doi: 10.1029/2005JA011532.en_US
dc.identifier.citedreferenceShi, Y., E. Zesta, and L. R. Lyons ( 2008a ), Modeling magnetospheric current response to solar wind dynamic pressure enhancements during magnetic storms: 1. Methodology and results of the 25 September 1998 peak main phase case, J. Geophys. Res., 113, A10218, doi: 10.1029/2008JA013111.en_US
dc.identifier.citedreferenceShi, Y., E. Zesta, and L. R. Lyons ( 2008b ), Modeling magnetospheric current response to solar wind dynamic pressure enhancements during magnetic storms: 2. Application to different storm phases, J. Geophys. Res., 113, A10219, doi: 10.1029/2008JA013420.en_US
dc.identifier.citedreferenceSitnov, M. I., N. A. Tsyganenko, A. Y. Ukhorskiy, and P. C. Brandt ( 2008 ), Dynamical data‐based modeling of the storm‐time geomagnetic field with enhanced spatial resolution, J. Geophys. Res., 113, A07218, doi: 10.1029/2007JA013003.en_US
dc.identifier.citedreferenceSitnov, M. I., N. A. Tsyganenko, A. Y. Ukhorskiy, B. J. Anderson, H. Korth, A. T. Y. Lui, and P. C. Brandt ( 2010 ), Empirical modeling of a CIR‐driven magnetic storm, J. Geophys. Res., 115, A07231, doi: 10.1029/2009JA015169.en_US
dc.identifier.citedreferenceSuigura, M. ( 1964 ), Hourly values of the equatorial Dst for IGY, in Annals of the International Geophysical Year, vol. 35, pp. 945 – 948, Pergamon, Oxford, U. K.en_US
dc.identifier.citedreferenceTsyganenko, N. A. ( 2002a ), A model of the magnetosphere with a dawn‐dusk asymmetry 1. Mathematical structure, J. Geophys. Res., 107 ( A8 ), SMP 12 – 1–SMP 12‐15, doi: 10.1029/2001JA000219.en_US
dc.identifier.citedreferenceTsyganenko, N. A. ( 2002b ), A model of the near magnetosphere with a dawn‐dusk asymmetry 2. Parameterization and fitting to observations, J. Geophys. Res., 107 ( A8 ), SMP 10 – 1–SMP 10‐17, doi: 10.1029/2001JA000220.en_US
dc.identifier.citedreferenceTsyganenko, N. A. ( 2014 ), Data‐based modeling of the geomagnetosphere with an IMF‐dependent magnetopause, J. Geophys. Res. Space Physics, 119, 335 – 354, doi: 10.1002/2013JA019346.en_US
dc.identifier.citedreferenceTsyganenko, N. A., and M. I. Sitnov ( 2005 ), Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res., 110, A03208, doi: 10.1029/2004JA010798.en_US
dc.identifier.citedreferenceTsyganenko, N. A., and M. I. Sitnov ( 2007 ), Magnetospheric configurations from a high‐resolution data‐based magnetic field model, J. Geophys. Res., 112, A06225, doi: 10.1029/2007JA012260.en_US
dc.identifier.citedreferenceTurner, N. E., D. N. Baker, T. I. Pulkkinen, and R. L. McPherron ( 2000 ), Evaluation of the tail current contribution to Dst, J. Geophys. Res., 105 ( A3 ), 5431 – 5439, doi: 10.1029/1999JA000248.en_US
dc.identifier.citedreferenceTurner, N. E., W. D. Cramer, S. K. Earles, and B. A. Emery ( 2009 ), Geoefficiency and energy partitioning in CIR‐driven and CME‐driven storms, J. Atmos. Sol. Terr. Phys., 71, 1023 – 1031, doi: 10.1016/j.jastp.2009.02.005.en_US
dc.identifier.citedreferenceWeygand, J. M., and R. L. McPherron ( 2006 ), Dependence of ring current asymmetry on storm phase, J. Geophys. Res., 111, A11221, doi: 10.1029/2006JA011808.en_US
dc.identifier.citedreferenceAkasofu, S. ‐I., and S. Chapman ( 1964 ), On the asymmetric development of magnetic storm fields in low and middle latitudes, Planet. Space Sci., 12 ( 6 ), 607 – 626, doi: 10.1016/0032‐0633(64)90008‐X.en_US
dc.identifier.citedreferenceAlexeev, I. I., E. S. Belenkaya, V. V. Kalegaev, Y. I. Feldstein, and A. Grafe ( 1996 ), Magnetic storms and magnetotail currents, J. Geophys. Res., 101 ( A4 ), 7737 – 7747, doi: 10.1029/95JA03509.en_US
dc.identifier.citedreferenceAlexeev, I. I., V. V. Kalegaev, E. S. Belenkaya, S. Y. Bobrovnikov, Y. I. Feldstein, and L. I. Gromova ( 2001 ), Dynamic model of the magnetosphere: Case study for January 9–12, 1997, J. Geophys. Res., 106 ( A11 ), 25,683 – 25,693, doi: 10.1029/2001JA900057.en_US
dc.identifier.citedreferenceAnderson, B. J., S. ‐I. Ohtani, H. Korth, and A. Ukhorskiy ( 2005 ), Storm time dawn‐dusk asymmetry of the large‐scale Birkeland currents, J. Geophys. Res., 110, A12220, doi: 10.1029/2005JA011246.en_US
dc.identifier.citedreferenceAnderson, B. J., and H. Korth ( 2007 ), Saturation of global field aligned currents observed during storms by the Iridium satellite constellation, J. Atmos. Sol. Terr. Phys., 69, 166 – 169, doi: 10.1016/j.jastp.2006.06.013.en_US
dc.identifier.citedreferenceBaumjohann, W. ( 1983 ), Ionospheric and field‐aligned current systems in the auroral zone: A concise review, Adv. Space Res., 2 ( 10 ), 55 – 62, doi: 10.1016/0273‐1177(82)90363‐5.en_US
dc.identifier.citedreferenceBogott, F. H., and F. S. Mozer ( 1973 ), ATS‐5 observations of energetic proton injection, J. Geophys. Res., 78 ( 34 ), 8113 – 8118, doi: 10.1029/JA078i034p08113.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2006 ), Differences between CME‐driven storms and CIR‐driven storms, J. Geophys. Res., 111, A07S08, doi: 10.1029/2005JA011447.en_US
dc.identifier.citedreferenceBoyle, C. B., P. H. Reiff, and M. R. Hairston ( 1997 ), Empirical polar cap potentials, J. Geophys. Res., 102 ( A1 ), 111 – 125, doi: 10.1029/96JA01742.en_US
dc.identifier.citedreferenceCahill, L. J., Jr. ( 1966 ), Inflation of the inner magnetosphere during a magnetic storm, J. Geophys. Res., 71 ( 19 ), 4505 – 4519, doi: 10.1029/JZ071i019p04505.en_US
dc.identifier.citedreferenceCampbell, W. H. ( 1996 ), Geomagnetic storms, the Dst ring‐current myth and lognormal distributions, J. Atmos. Terr. Phys., 58, 1171 – 1187, doi: 10.1016/0021‐9169(95)00103‐4.en_US
dc.identifier.citedreferenceCampbell, W. H. ( 2004 ), Failure of Dst index fields to represent a ring current, Space Weather, 2, S08002, doi: 10.1029/2003SW000041.en_US
dc.identifier.citedreferenceCampbell, W. H. ( 2008 ), Comment on “Unraveling the causes of radiation belt enhancements,” Eos Trans. AGU, 89, 379, doi: 10.1029/2008EO400006.en_US
dc.identifier.citedreferenceClauer, C. R., and R. L. McPherron ( 1980 ), The relative importance of the interplanetary electric field and magnetospheric substorms on partial ring current development, J. Geophys. Res., 85 ( A12 ), 6747 – 6759, doi: 10.1029/JA085iA12p06747.en_US
dc.identifier.citedreferenceClauer, C. R., R. L. McPherron, and C. Searls ( 1983 ), Solar wind control of the low‐latitude asymmetric magnetic disturbance field, J. Geophys. Res., 88 ( A3 ), 2123 – 2130, doi: 10.1029/JA088iA03p02123.en_US
dc.identifier.citedreferenceCrooker, N. U., and G. L. Siscoe ( 1971 ), A study of the geomagnetic disturbance field asymmetry, Radio Sci., 6 ( 4 ), 495 – 501, doi: 10.1029/RS006i004p00495.en_US
dc.identifier.citedreferenceCrooker, N. U., and G. L. Siscoe ( 1981 ), Birkeland currents as the cause of the low‐latitude asymmetric disturbance field, J. Geophys. Res., 86 ( A13 ), 11,201 – 11,210, doi: 10.1029/JA086iA13p11201.en_US
dc.identifier.citedreferenceCummings, W. D. ( 1966 ), Asymmetric ring currents and the low‐latitude disturbance daily variation, J. Geophys. Res., 71 ( 19 ), 4495 – 4503, doi: 10.1029/JZ071i019p04495.en_US
dc.identifier.citedreferenceDessler, A. J., and E. N. Parker ( 1959 ), Hydromagnetic theory of geomagnetic storms, J. Geophys. Res., 64 ( 12 ), 2239 – 2252, doi: 10.1029/JZ064i012p02239.en_US
dc.identifier.citedreferenceDremukhina, L. A., Y. I. Feldstein, I. I. Alexeev, V. V. Kalegaev, and M. E. Greenspan ( 1999 ), Structure of the magnetospheric magnetic field during magnetic storms, J. Geophys. Res., 104 ( A12 ), 28,351 – 28,360, doi: 10.1029/1999JA900261.en_US
dc.identifier.citedreferenceFriedrich, E., G. Rostoker, M. G. Connors, and R. L. McPherron ( 1999 ), Influence of the substorm current wedge on the Dst index, J. Geophys. Res., 104 ( A3 ), 4567 – 4575, doi: 10.1029/1998JA900096.en_US
dc.identifier.citedreferenceFukushima, N., and Y. Kamide ( 1973 ), Partial ring current models for worldwide geomagnetic disturbances, Rev. Geophys., 11 ( 4 ), 795 – 853, doi: 10.1029/RG011i004p00795.en_US
dc.identifier.citedreferenceGanushkina, N. Yu., T. I. Pulkkinen, M. V. Kubyshkina, H. J. Singer, and C. T. Russell ( 2004 ), Long‐term evolution of magnetospheric current systems during storms, Ann. Geophys., 22, 1317 – 1334, doi: 10.5194/angeo‐22‐1317‐2004.en_US
dc.identifier.citedreferenceGanushkina, N. Yu., M. W. Liemohn, and T. I. Pulkkinen ( 2012a ), Storm‐time ring current: Model‐dependent results, Ann. Geophys., 30, 177 – 202, doi: 10.5194/angeo‐30‐177‐2012.en_US
dc.identifier.citedreferenceGanushkina, N. Y., S. Dubyagin, M. Kubyshkina, M. Liemohn, and A. Runov ( 2012b ), Inner magnetosphere currents during the CIR/HSS storm on July 21–23, 2009, J. Geophys. Res., 117, A00L04, doi: 10.1029/2011JA017393.en_US
dc.identifier.citedreferenceGonzalez, W. D., J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani, and V. M. Vasyliunas ( 1994 ), What is a geomagnetic storm?, J. Geophys. Res., 99 ( A4 ), 5771 – 5792, doi: 10.1029/93JA02867.en_US
dc.identifier.citedreferenceHäkkinen, L. V. T., T. I. Pulkkinen, H. Nevanlinna, R. J. Pirjola, and E. I. Tanskanen ( 2002 ), Effects of induced currents on Dst and on magnetic variations at midlatitude stations, J. Geophys. Res., 107 ( A1 ), SMP 7 – 1–SMP 7‐8, doi: 10.1029/2001JA900130.en_US
dc.identifier.citedreferenceHarel, M., R. A. Wolf, R. W. Spiro, P. H. Reiff, C. ‐K. Chen, W. J. Burke, F. J. Rich, and M. Smiddy ( 1981 ), Quantitative simulation of a magnetospheric substorm 2. Comparison with observations, J. Geophys. Res., 86 ( A4 ), 2242 – 2260, doi: 10.1029/JA086iA04p02242.en_US
dc.identifier.citedreferenceHuang, C. ‐L., H. E. Spence, H. J. Singer, and N. A. Tsyganenko ( 2008 ), A quantitative assessment of empirical magnetic field models at geosynchronous orbit during magnetic storms, J. Geophys. Res., 113, A04208, doi: 10.1029/2007JA012623.en_US
dc.identifier.citedreferenceIyemori, T. ( 1990 ), Storm‐time magnetospheric currents inferred from mid‐latitude geomagnetic field variations, J. Geomag. Geoelectr., 42, 1249 – 1265.en_US
dc.identifier.citedreferenceIyemori, T., and D. R. K. Rao ( 1996 ), Decay of the Dst field of geomagnetic disturbance after substorm onset and its implication to storm‐substorm relation, Ann. Geophys., 14, 608 – 618, doi: 10.1007/s00585‐996‐0608‐3.en_US
dc.identifier.citedreferenceIyemori, T. ( 2010 ), Mid‐latitude geomagnetic indices “ASY” and “SYM” for 2009 (Provisional). [Available at http://wdc.kugi.kyoto‐u.ac.jp/aeasy/asy.pdf.]en_US
dc.identifier.citedreferenceKalegaev, V. V., N. Y. Ganushkina, T. I. Pulkkinen, M. V. Kubyshkina, H. J. Singer, and C. T. Russell ( 2005 ), Relation between the ring current and the tail current during magnetic storms, Ann. Geophys., 23, 523 – 533, doi: 10.5194/angeo‐23‐523‐2005.en_US
dc.identifier.citedreferenceKamide, Y. ( 1992 ), Is substorm occurrence a necessary condition for a magnetic storm?, J. Geomag. Geoelectr., 44, 109 – 117.en_US
dc.identifier.citedreferenceKatus, R. M., and M. W. Liemohn ( 2013 ), Similarities and differences in low‐to middle‐latitude geomagnetic indices, J. Geophys. Res. Space Physics, 118, 5149 – 5156, doi: 10.1002/jgra.50501.en_US
dc.identifier.citedreferenceKawasaki, K., and S. ‐I. Akasofu ( 1971 ), Low‐latitude DS component of geomagnetic storm field, J. Geophys. Res., 76 ( 10 ), 2396 – 2405, doi: 10.1029/JA076i010p02396.en_US
dc.identifier.citedreferenceLangel, R. A., and R. H. Estes ( 1985 ), Large‐scale, near‐field magnetic fields from external sources and the corresponding induced internal field, J. Geophys. Res., 90 ( B3 ), 2487 – 2494, doi: 10.1029/JB090iB03p02487.en_US
dc.identifier.citedreferenceLiemohn, M. W. ( 2003 ), Yet another caveat to using the Dessler‐Parker‐Sckopke relation, J. Geophys. Res., 108 ( A6 ), 1251, doi: 10.1029/2003JA009839.en_US
dc.identifier.citedreferenceLiemohn, M. W., and A. A. Chan ( 2008 ), Reply to comment on “Unraveling the causes of radiation belt enhancements,” Eos Trans. AGU, 89 ( 40 ), 379, doi: 10.1029/2008EO400007.en_US
dc.identifier.citedreferenceLiemohn, M. W., J. U. Kozyra, M. F. Thomsen, J. L. Roeder, G. Lu, J. E. Borovsky, and T. E. Cayton ( 2001 ), Dominant role of the asymmetric ring current in producing the stormtime Dst, J. Geophys. Res., 106, 10,883 – 10,904, doi: 10.1029/2000JA000326.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.