Show simple item record

Electron flux models for different energies at geostationary orbit

dc.contributor.authorBoynton, R. J.
dc.contributor.authorBalikhin, M. A.
dc.contributor.authorSibeck, D. G.
dc.contributor.authorWalker, S. N.
dc.contributor.authorBillings, S. A.
dc.contributor.authorGanushkina, N.
dc.date.accessioned2017-01-06T20:48:04Z
dc.date.available2017-12-01T21:54:11Zen
dc.date.issued2016-10
dc.identifier.citationBoynton, R. J.; Balikhin, M. A.; Sibeck, D. G.; Walker, S. N.; Billings, S. A.; Ganushkina, N. (2016). "Electron flux models for different energies at geostationary orbit." Space Weather 14(10): 846-860.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/134930
dc.description.abstractForecast models were derived for energetic electrons at all energy ranges sampled by the third‐generation Geostationary Operational Environmental Satellites (GOES). These models were based on Multi‐Input Single‐Output Nonlinear Autoregressive Moving Average with Exogenous inputs methodologies. The model inputs include the solar wind velocity, density and pressure, the fraction of time that the interplanetary magnetic field (IMF) was southward, the IMF contribution of a solar wind‐magnetosphere coupling function proposed by Boynton et al. (2011b), and the Dst index. As such, this study has deduced five new 1 h resolution models for the low‐energy electrons measured by GOES (30–50 keV, 50–100 keV, 100–200 keV, 200–350 keV, and 350–600 keV) and extended the existing >800 keV and >2 MeV Geostationary Earth Orbit electron fluxes models to forecast at a 1 h resolution. All of these models were shown to provide accurate forecasts, with prediction efficiencies ranging between 66.9% and 82.3%.Key PointsA set of electron flux forecast models is deduced for energy ranges sampled by GOES 13The deduced models forecasting performance statistics are detailedThe models will be implemented as a real‐time forecasting tool
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.otherelectron flux models
dc.subject.otherforecasting
dc.subject.otherradiation belts
dc.titleElectron flux models for different energies at geostationary orbit
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134930/1/swe20385.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134930/2/swe20385_am.pdf
dc.identifier.doi10.1002/2016SW001506
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceLohmeyer, W., and K. Cahoy ( 2013 ), Space weather radiation effects on geostationary satellite solid‐state power amplifiers, Space Weather, 11, 476 – 488, doi: 10.1002/swe.20071.
dc.identifier.citedreferenceHorne, R. B., S. A. Glauert, N. P. Meredith, D. Boscher, V. Maget, D. Heynderickx, and D. Pitchford ( 2013a ), Space weather impacts on satellites and forecasting the Earth’s electron radiation belts with SPACECAST, Space Weather, 11, 169 – 186, doi: 10.1002/swe.20023.
dc.identifier.citedreferenceHorne, R. B., et al. ( 2013b ), Forecasting the Earth’s radiation belts and modelling solar energetic particle events: Recent results from SPACECAST, J. Space Weather Space Clim., 3, A20.
dc.identifier.citedreferenceKoons, H. C., and D. J. Gorney ( 1991 ), A neural network model of the relativistic electron flux at geosynchronous orbit, J. Geophys. Res., 96 ( A4 ), 5549 – 5556.
dc.identifier.citedreferenceLeontaritis, I. J., and S. A. Billings ( 1985a ), Input‐output parametric models for non‐linear systems: Part I. Deterministic non‐linear systems, Int. J. Control, 41 ( 2 ), 303 – 328.
dc.identifier.citedreferenceLeontaritis, I. J., and S. A. Billings ( 1985b ), Input‐output parametric models for non‐linear systems: Part II. Stochastic nonlinear systems, Int. J. Control, 41 ( 2 ), 329 – 344.
dc.identifier.citedreferenceLi, W., B. Ni, R. M. Thorne, J. Bortnik, J. C. Green, C. A. Kletzing, W. S. Kurth, and G. B. Hospodarsky ( 2013 ), Constructing the global distribution of chorus wave intensity using measurements of electrons by the POES satellites and waves by the Van Allen Probes, Geophys. Res. Lett., 40, 4526 – 4532, doi: 10.1002/grl.50920.
dc.identifier.citedreferenceLi, X. ( 2004 ), Variations of 0.7–6.0 MeV electrons at geosynchronous orbit as a function of solar wind, Space Weather, 2, S03006, doi: 10.1029/2003SW000017.
dc.identifier.citedreferenceLing, A. G., G. P. Ginet, R. V. Hilmer, and K. L. Perry ( 2010 ), A neural network‐based geosynchronous relativistic electron flux forecasting model, Space Weather, 8, S09003, doi: 10.1029/2010SW000576.
dc.identifier.citedreferenceBalikhin, M. A., R. J. Boynton, S. N. Walker, J. E. Borovsky, S. A. Billings, and H. L. Wei ( 2011 ), Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit, Geophys. Res. Lett., 38, L18105, doi: 10.1029/2011GL048980.
dc.identifier.citedreferenceLohmeyer, W., A. Carlton, F. Wong, M. Bodeau, A. Kennedy, and K. Cahoy ( 2015 ), Response of geostationary communications satellite solid‐state power amplifiers to high‐energy electron fluence, Space Weather, 13, 298 – 315, doi: 10.1002/2014SW001147.
dc.identifier.citedreferenceMao, K. Z., and S. A. Billings ( 1997 ), Algorithms for minimal model structure detection in nonlinear dynamic system identification, Int. J. Control, 68 ( 2 ), 311 – 330, doi: 10.1080/002071797223631.
dc.identifier.citedreferenceMourenas, D., A. V. Artemyev, O. V. Agapitov, V. Krasnoselskikh, and W. Li ( 2014 ), Approximate analytical solutions for the trapped electron distribution due to quasi‐linear diffusion by whistler mode waves, J. Geophys. Res. Space Physics, 119, 9962 – 9977, doi: 10.1002/2014JA020443.
dc.identifier.citedreferenceMullen, E. G., M. S. Gussenhoven, D. A. Hardy, T. A. Aggson, B. G. Ledley, and E. Whipple ( 1986 ), Scatha survey of high‐level spacecraft charging in sunlight, J. Geophys. Res., 91 ( A2 ), 1474 – 1490.
dc.identifier.citedreferenceOlsen, R. C. ( 1983 ), A threshold effect for spacecraft charging, J. Geophys. Res., 88 ( A1 ), 493 – 499.
dc.identifier.citedreferenceOsthus, D., P. C. Caragea, D. Higdon, S. K. Morley, G. D. Reeves, and B. P. Weaver ( 2014 ), Dynamic linear models for forecasting of radiation belt electrons and limitations on physical interpretation of predictive models, Space Weather, 12, 426 – 446, doi: 10.1002/2014SW001057.
dc.identifier.citedreferenceRastatter, L., et al. ( 2013 ), Geospace environment modeling 2008–2009 challenge: D s t index, Space Weather, 11, 187 – 205, doi: 10.1002/swe.20036.
dc.identifier.citedreferenceReeves, G. D. ( 1998 ), Relativistic electrons and magnetic storms: 1992–1995, Geophys. Res. Lett., 25 ( 11 ), 1817 – 1820.
dc.identifier.citedreferenceTemerin, M., and X. Li ( 2006 ), Dst model for 1995–2002, J. Geophys. Res., 111, A04221, doi: 10.1029/2005JA011257.
dc.identifier.citedreferenceWei, H. L., and S. A. Billings ( 2006 ), An efficient nonlinear cardinal B‐spline model for high tide forecasts at the Venice Lagoon, Nonlinear Processes Geophys., 13 ( 5 ), 577 – 584.
dc.identifier.citedreferenceWei, H.‐L., and S. A. Billings ( 2008 ), Model structure selection using an integrated forward orthogonal search algorithm assisted by squared correlation and mutual information, Int. J. Model. Ident. Control, 3, 341 – 356.
dc.identifier.citedreferenceWei, H. L., S. A. Billings, and M. Balikhin ( 2004 ), Prediction of the D s t index using multiresolution wavelet models, J. Geophys. Res., 109, A07212, doi: 10.1029/2003JA010332.
dc.identifier.citedreferenceWei, H.‐L., S. A. Billings, A. Surjalal Sharma, S. Wing, R. J. Boynton, and S. N. Walker ( 2011 ), Forecasting relativistic electron flux using dynamic multiple regression models, Ann. Geophys., 29 ( 2 ), 415 – 420, doi: 10.5194/angeo‐29‐415‐2011.
dc.identifier.citedreferenceWrenn, G. L., D. J. Rodgers, and K. A. Ryden ( 2002 ), A solar cycle of spacecraft anomalies due to internal charging, Ann. Geophys., 20 ( 7 ), 953 – 956.
dc.identifier.citedreferenceBaker, D., R. Belian, P. Higbie, R. Klebesadel, and J. Blake ( 1987 ), Deep dielectric charging effects due to high‐energy electrons in Earth’s outer magnetosphere, J. Electrostat., 20 ( 1 ), 3 – 19.
dc.identifier.citedreferenceBaker, D. N., R. L. McPherron, T. E. Cayton, and R. W. Klebesadel ( 1990 ), Linear prediction filter analysis of relativistic electron properties at 6.6  R E, J. Geophys. Res., 95 ( A9 ), 15,133 – 15,140.
dc.identifier.citedreferenceBalikhin, M. A., O. M. Boaghe, S. A. Billings, and H. S. C. K. Alleyne ( 2001 ), Terrestrial magnetosphere as a nonlinear resonator, Geophys. Res. Lett., 28 ( 6 ), 1123 – 1126.
dc.identifier.citedreferenceBalikhin, M. A., R. J. Boynton, S. A. Billings, M. Gedalin, N. Ganushkina, D. Coca, and H. Wei ( 2010 ), Data based quest for solar wind‐magnetosphere coupling function, Geophys. Res. Lett., 37, L24107, doi: 10.1029/2010GL045733.
dc.identifier.citedreferenceBalikhin, M. A., M. Gedalin, G. D. Reeves, R. J. Boynton, and S. A. Billings ( 2012 ), Time scaling of the electron flux increase at GEO: The local energy diffusion model vs observations, J. Geophys. Res., 117, A10208, doi: 10.1029/2012JA018114.
dc.identifier.citedreferenceBalikhin, M. A., J. V. Rodriguez, R. J. Boynton, S. N. Walker, H. Aryan, D. G. Sibeck, and S. A. Billings ( 2016 ), Comparative analysis of NOAA REFM and SNB 3 GEO tools for the forecast of the fluxes of high‐energy electrons at GEO, Space Weather, 14, 22 – 31, doi: 10.1002/2015SW001303.
dc.identifier.citedreferenceBeharrell, M. J., and F. Honary ( 2016 ), Decoding solar wind‐magnetosphere coupling, Space Weather, 14, doi: 10.1002/2016SW001467, in press.
dc.identifier.citedreferenceBillings, S., M. Korenberg, and S. Chen ( 1988 ), Identification of non‐linear output affine systems using an orthogonal least‐squares algorithm, Int. J. Syst. Sci., 19, 1559 – 1568.
dc.identifier.citedreferenceBillings, S., S. Chen, and M. Korenberg ( 1989 ), Identification of MIMO non‐linear systems using a forward‐regression orthogonal estimator, Int. J. Control, 49 ( 6 ), 2157 – 2189.
dc.identifier.citedreferenceBillings, S. A., and H. L. Wei ( 2008 ), An adaptive orthogonal search algorithm for model subset selection and non‐linear system identification, Int. J. Control, 81 ( 5 ), 714 – 724, doi: 10.1080/00207170701216311.
dc.identifier.citedreferenceBlake, J. B., W. A. Kolasinski, R. W. Fillius, and E. G. Mullen ( 1992 ), Injection of electrons and protons with energies of tens of MeV into L < 3 on 24 March 1991, Geophys. Res. Lett., 19 ( 8 ), 821 – 824.
dc.identifier.citedreferenceBoaghe, O. M., M. A. Balikhin, S. A. Billings, and H. Alleyne ( 2001 ), Identification of nonlinear processes in the magnetospheric dynamics and forecasting of Dst index, J. Geophys. Res., 106 ( A12 ), 30,047 – 30,066.
dc.identifier.citedreferenceBoynton, R. J., M. A. Balikhin, S. A. Billings, A. S. Sharma, and O. A. Amariutei ( 2011a ), Data derived NARMAX Dst model, Ann. Geophys., 29 ( 6 ), 965 – 971, doi: 10.5194/angeo‐29‐965‐2011.
dc.identifier.citedreferenceBoynton, R. J., M. A. Balikhin, S. A. Billings, H. L. Wei, and N. Ganushkina ( 2011b ), Using the NARMAX OLS‐ERR algorithm to obtain the most influential coupling functions that affect the evolution of the magnetosphere, J. Geophys. Res., 116, A05218, doi: 10.1029/2010JA015505.
dc.identifier.citedreferenceBoynton, R. J., M. A. Balikhin, S. A. Billings, and O. A. Amariutei ( 2013a ), Application of nonlinear autoregressive moving average exogenous input models to Geospace: Advances in understanding and space weather forecasts, Ann. Geophys., 31 ( 9 ), 1579 – 1589.
dc.identifier.citedreferenceBoynton, R. J., M. A. Balikhin, S. A. Billings, G. D. Reeves, N. Ganushkina, M. Gedalin, O. A. Amariutei, J. E. Borovsky, and S. N. Walker ( 2013b ), The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach, J. Geophys. Res. Space Physics, 118, 1500 – 1513, doi: 10.1002/jgra.50192.
dc.identifier.citedreferenceBoynton, R. J., M. A. Balikhin, and S. A. Billings ( 2015 ), Online NARMAX model for electron fluxes at GEO, Ann. Geophys., 33 ( 3 ), 405 – 411.
dc.identifier.citedreferenceFreeman, J. W., T. P. O’Brien, A. A. Chan, and R. A. Wolf ( 1998 ), Energetic electrons at geostationary orbit during the November 3–4, 1993 storm: Spatial/temporal morphology, characterization by a power law spectrum and, representation by an artificial neural network, J. Geophys. Res., 103 ( A11 ), 26,251 – 26,260.
dc.identifier.citedreferenceFriedel, R., G. Reeves, and T. Obara ( 2002 ), Relativistic electron dynamics in the inner magnetosphere—A review, J. Atmos. Sol. Terr. Phys., 64 ( 2 ), 265 – 282.
dc.identifier.citedreferenceFriederich, U., D. Coca, S. A. Billings, and M. Juusola ( 2009 ), Data modelling for analysis of adaptive changes in fly photoreceptors, in Proceedings of the 16th International Conference on Neural Information Processing: Part I, vol. 5863, edited by C. S. Leung, M. Lee, and J. H. Chan, pp. 34 – 38, Springer, Berlin.
dc.identifier.citedreferenceGanushkina, N. Y., O. A. Amariutei, Y. Y. Shprits, and M. W. Liemohn ( 2013 ), Transport of the plasma sheet electrons to the geostationary distances, J. Geophys. Res. Space Physics, 118, 82 – 98, doi: 10.1029/2012JA017923.
dc.identifier.citedreferenceGanushkina, N. Y., M. W. Liemohn, O. A. Amariutei, and D. Pitchford ( 2014 ), Low‐energy electrons (5–50 kev) in the inner magnetosphere, J. Geophys. Res. Space Physics, 119, 246 – 259, doi: 10.1002/2013JA019304.
dc.identifier.citedreferenceGanushkina, N. Y., O. A. Amariutei, D. Welling, and D. Heynderickx ( 2015 ), Nowcast model for low‐energy electrons in the inner magnetosphere, Space Weather, 13, 16 – 34, doi: 10.1002/2014SW001098.
dc.identifier.citedreferenceGubby, R., and J. Evans ( 2002 ), Space environment effects and satellite design, J. Atmos. Sol. Terr. Phys., 64 ( 16 ), 1723 – 1733.
dc.identifier.citedreferenceGuo, Y., L. Guo, S. Billings, and H.‐L. Wei ( 2014 ), An iterative orthogonal forward regression algorithm, Int. J. Syst. Sci., 46 ( 5 ), 776 – 789, doi: 10.1080/00207721.2014.981237.
dc.identifier.citedreferenceHanser, F. A. ( 2011 ), EPS/HEPAD calibration and data handbook, Tech. Rep. GOESN‐ENG‐048D, Assur. Technol. Corp., Carlisle, Mass.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.